Applied Algebra Qualifying Exam: Part II
 September 6, 2011

Do as many problems as you can, but you must attempt at least 5 problems where two of the problems are from problems 1-5 and two of the problems are from problems 6-9. The point values are relative values for this part of the exam. Your final score will be scaled so that this part of the exam will represent 60% of your point total.

Let $\mathbb{N}=\{0,1,2, \ldots\}, \mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}, \mathbb{Q}$ equal the rationals and \mathbb{C} denote the complex numbers. Suppose that $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}\right)$ is a partition of n. Then A^{λ} denotes the irreducible representation of the symmetric group S_{n} such that the Frobenius image of $\chi^{A^{\lambda}}=\chi^{\lambda}$ is the Schur function $S_{\lambda}\left(x_{1}, \ldots, x_{N}\right)$ where $N>n$ and $S_{\lambda_{1}} \times \cdots \times S_{\lambda_{k}}$ denotes the Young subgroup of S_{n} corresponding to λ.
(1) (30 pts)
(a) Use the Murnaghnam-Nakayama rule to compute the character table of S_{4}.
(b) Express $\chi^{A^{(2,2)} \downarrow_{S_{2} \times S_{2}}^{S_{4}}}$ as a sum of irreducible characters of $S_{2} \times S_{2}$. (Hint: First write out the character table for $S_{2} \times S_{2}$.)
(2) (40 pts) Let G be the group of order 21 defined by the relations

$$
a^{7}=b^{3}=1 \text { and } b^{-1} a b=a^{2} .
$$

(a) Verify that the conjugacy classes of G are

$$
\begin{aligned}
& C_{1}=\{1\} \\
& C_{2}=\left\{a, a^{2}, a^{4}\right\} \\
& C_{3}\left\{a^{3}, a^{5}, a^{6}\right\} \\
& C_{4}=\left\{a^{k} b: k=0, \ldots, 6\right\} \\
& C_{5}\left\{a^{k} b^{2}: k=0, \ldots, 6\right\}
\end{aligned}
$$

(b) Show that $H=\left\{a^{k}: k=0, \ldots, 6\right\}$ is a normal subgroup of G for which G / H is isomorphic to Z_{3}. Give the character character table for the lifting of the 3 linear characters of G / H to G.
(c) Let χ be the linear character of H given by

$$
\chi\left(a^{k}\right)=\eta^{k} \text { for } k=0, \ldots 6
$$

where $\eta=e^{2 \pi i / 7}$. Show that $\chi \uparrow_{H}^{G}$ is an irreducible character of G.
(d) Use parts (b) and (c) to give a complete character table for G.
(3) (30 pts)
(a) Find the decomposition of $A^{\left(2,1^{2}\right)} \times A^{(2,2)} \uparrow_{S_{4} \times S_{4}}^{8}$ as a sum of irreducible representations of S_{8}.
(b) Let T denote the trivial representation on the Young subgroup $S_{3} \times S_{2} \times S_{1}$ of S_{7} and Alt denote the alternating representation on the Young subgroup $S_{3} \times S_{2} \times S_{1}$ of S_{7}. Find the decompositon of

$$
T \uparrow_{S_{3} \times S_{2} \times S_{1}}^{S_{6}} \quad \text { and } A l t \uparrow_{S_{3} \times S_{2} \times S_{1}}^{S_{6}}
$$

as a sum of irreducible representations of S_{7}.
(c) Find the decomposition of the Kronecker product $A^{(3,2)} \otimes A^{(3,2)}$ as a sum of irreducible representations of S_{5}.
(4) (30 pts) Let H be a subgroup of G and let $G=\tau_{1} H+\ldots+\tau_{k} H$ be its coset decomposition. Define a permutation representation L of G by

$$
\begin{align*}
\sigma\left\langle\tau_{1} H, \ldots, \tau_{k} H\right\rangle & =\left\langle\sigma \tau_{1} H, \ldots, \sigma \tau_{k} H\right\rangle \tag{1}\\
& =\left\langle\tau_{1} H, \ldots, \tau_{k} H\right\rangle L(\sigma) \tag{2}
\end{align*}
$$

so that $L(\sigma)_{i, j}=\chi\left(\tau_{i} H=\sigma \tau_{j} H\right)$.
(a) Prove that L is a representation.
(b) Consider the special case where $G=S_{n}$ and $H=S_{n-1} \times S_{1}=\left\{\sigma \in S_{n}: \sigma(n)=n\right\}$.
(i) Show that the coset decompostion of G relative to H is given by $G=H+(1, n) H+\ldots(n-1, n) H$ where (i, n) denotes the transposition which interchanges i and n.
(ii) Show that $\chi^{L}(\sigma)=f i x(\sigma)$ where $f i x(\sigma)$ denotes the number of fixed points of σ.
(c) In the special case where $G=S_{4}$ and $H=S_{3} \times S_{1}$, use part (b) to decompose L a sum of irreducible representations of S_{4}.
(5) (30 pts.) Let G and H be finite groups and let $A: G \rightarrow G L_{n}(C)$ and $B: \rightarrow G L_{m}(C)$ be representations of G and H respectively.
a) Show that $A \times B: G \times H \rightarrow G L_{n m}(C)$ is representation where for $(\sigma, \tau) \in G \times H$,

$$
A \times B((\sigma, \tau))=A(\sigma) \otimes B(\tau)
$$

and for matrices M and $N, M \otimes N$ is the Kronecker product of M and N.
b) Show that if A is an irreducible representation of G and B is an irreducible representation of H, then $A \times B$ is an irreducible representation of $G \times H$.
c) Show that every irreducible representation of $G \times H$ is of the form $A \times B$ where A is an irreducible representation of G and B is an irreducible representation of H.
(6) (30 pts.) Let $\langle A,+, \cdot\rangle$ be a commutative ring with identity 1 and let $<$ be a linear order on A such that for all a, b, x in A
(I) $a<b \Rightarrow a+x<b+x$ and
(II) $a<b, 0<x \Rightarrow a \cdot x<b \cdot x$.
(a) Prove that $\langle A,+, \cdot\rangle$ is an integral domain.
(b) Let $A^{+}=\{a \in A: 0<a\}$. Prove the following:
(i) A^{+}is closed under multiplication and addition.
(ii) If $a \in A$, then exactly one of the following holds: $a \in A^{+},-a \in A^{+}, a=0$.
(iii) $1 \in A^{+}$.
(7) (40 pts.) Consider the equations

$$
\begin{aligned}
x^{2}+y & =-2 \\
2 x y & =y^{2}-2 y
\end{aligned}
$$

(a) Let I be the ideal of $\mathbf{C}[x, y]$ generated by these equations. Find the Groebner basis for I relative to lexicographic order where $x>y$.
(b) Find a Groebner basis for $\mathbf{C}[y] \cap I$.
(c) Find all solutions to these equations that lie \mathbf{C}^{2}.
(d) Find a vector space basis for $\mathbf{C}[x, y] / I$.
(8) (40 pts.) Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ where k is field.
(i) Prove $I \cap J=(t I+(1-1) J) \cap k\left[x_{1}, \ldots, x_{n}\right]$.
(ii) Prove that $\mathbf{V}(\mathbf{I} \cap \mathbf{J})=\mathbf{V}(\mathbf{I}) \cup \mathbf{V}(\mathbf{J})$ where for any set $X \subseteq k\left[x_{1}, \ldots, x_{n}\right], \mathbf{V}(X)$ is the affine variety defined by X.
(iii) Prove that $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
(iv) Let $I=\left\langle x^{3} y\right\rangle$ and $J=\left\langle x y^{3}+x y\right\rangle$ be ideals in $k[x, y]$. Find a Gröbner basis for $I \cap J$ relative to lexicographic order where $x>y$.
(9) (30 pts.) Let k be a field.
(a) State Hilbert's Nullstellensatz Theorem.
(b) Prove that if $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, then $f \in \sqrt{I}$ if and only if $1 \in\left\langle f_{1}, \ldots, f_{s}, 1-\right.$ $y f\rangle \subseteq k\left[x_{1}, \ldots, x_{n}, y\right]$.
(c) Prove that if $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $J=\langle f\rangle$ is the principal ideal generated by f, then $\sqrt{J}=\left\langle f_{1} f_{2} \cdots f_{r}\right\rangle$ where $f=f_{1}^{a_{1}} f_{2}^{a_{2}} \cdots f_{r}^{a_{r}}$ is the factorization of f into a product of distinct irreducible polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$.

