Algebra/Applied Algebra Qualifying Exam

Part I
May 28, 2004
(15) 1. State and prove the Schur Decomposition Theorem.
(13) 2. (a) Let $A \in M_{n}$. Show that if $z^{H} A z=0$ for all $z \in \mathbb{C}^{n}$ then $A=0$.
(b) Give a 2×2 example of $A \in M_{2}(\mathbb{R})$, where $A \neq 0$, but $x^{T} A x=0$ for all $x \in \mathbb{R}^{2}$.
(c) Show that $A \in M_{n}$ is normal iff $\|A x\|_{2}=\left\|A^{H} x\right\|_{2}$ for all $x \in \mathbb{C}^{n}$.
(d) Show that $A \in M_{n}$ is normal iff $\theta(A x, A y)=\theta\left(A^{H} x, A^{H} y\right)$ for all $x, y \in \mathbb{C}^{n}$.
(12) 3. Let \hat{x} be a least squares solution to $A x=b$, where $A \in M_{m . n}$ and $m \geq n$. Let A^{\dagger} be the pseudo-inverse of A. Use the Singular Value Decomposition to show that $\tilde{x}=A^{\dagger} b$ is the $\min 2$-norm least squares solution to $A x=b$, i.e., show
(a) \tilde{x} is a least squares solution,
(b) if \hat{x} is a least square solution then $\|\hat{x}\|_{2} \geq\|\tilde{x}\|_{2}$, and
(c) \tilde{x} is unique.

This part will count 60% of total points of the exam.
Do as many problems as you can but you miust do at least 3 problems from 1-7 and 2 problems m 8-11.

Let $N=\{0,1,2, \ldots\}, Z=\{0, \pm 1, \pm 2, \ldots\}, Q$ equal the rationals and C denote the complex numbers.
If $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}\right)$ is a partition of n, iet A^{λ} denote the irreducible representation of the symmetric group S_{n} such that the Frobenius image of $\chi^{A^{n}}$ is the Schur function $S_{\lambda}\left(x_{1}, \ldots, x_{N}\right)$ where $N>n$.
(1) (30 pts) Let G and H be a finite groups, $A: G \rightarrow G L(\pi, C)$ be a representation of G and $B: H \rightarrow$ $G L(m, \mathrm{C})$ be a representation of H.
(a) Define the representation $A \times B: G \times H \rightarrow G L(n \cdot m, \mathrm{C})$
(b) Show that if A and B are irreducible representations, then $A \times B$ is irreducible.
(c) Show that every irreducible representation of $G \times H$ is of the form $A \times B$ where A is an irreducible representation of G and B is an irreducible representation of H.
(2) (30 pts)
(a) Let T be the trivial representation. Decompose $T \uparrow_{S_{2} \times S_{3}}^{S_{6}}$ as a sum of irreducible representations of S_{6} where $S_{3} \times S_{3}$ is the Young subgroup of S_{6} consisting of all permuations $\sigma \in S_{6}$ such that

$$
\sigma(1), \sigma(2), \sigma(3) \in\{1,2,3\}, \sigma(4), \sigma(5), \sigma(6) \in\{4,5,6\}
$$

(b) Decompose $A^{(2,4)} \otimes A^{(1,5)}$ as a sum of irreducible representations of S_{6} where \otimes represents the Kronecker product of the representations.

Decompose $A^{(1,2)} \times A^{(1,2)} \uparrow_{S_{3} \times S_{3}}^{S_{6}}$ as a sum of irreducible representations of S_{6}. (Here $S_{3} \times S_{3}$ is group described in part. (a).)
(3) (30 pts)
(a) Use the Murnaghnam-Nakayama rule to compute the values of the character $A^{(1,4)}$ on the conjugacy classes of S_{5}.
(b) Express $\chi^{A^{(2,4)}+s_{3} \times s_{2}}$ as a sum of irreducible characters of $S_{3} \times \mathcal{S}_{2}$. Here $S_{3} \times S_{2}$ is the Young subgroup of S_{5} consisting of all permuations $\sigma \in S_{6}$ such that

$$
\sigma(1), \sigma(2), \sigma(3) \in\{1,2,3\}, \sigma(4), \sigma(5) \in\{4,5\} .
$$

(4) (30 pts) Let G be the group of order 8 defined by the relations

$$
a^{4}=1 \text { and } a^{2}=b^{2}=1 \text { and } b^{-1} a b=a^{3} .
$$

(a) Show that $a b=b^{3} a$ and that every element of G is of the form b^{k} or $b^{k} a$ where $k=0, \ldots, 3$.
(b) Given that the conjugacy classes of G are
$C_{1}=\{1\}$
$C_{2}=\left\{b^{2}\right\}$
$C_{3}=\left\{b, b^{3}\right\}$
$C_{4}=\left\{a, b^{2} a\right\}$
$C_{5}=\left\{b a, b^{3} a\right\}$
(. Show that $H=\left\{1, b^{2}\right\}$ is a normal subgroup of G for which G / H is isomorphic to $Z_{2} \times Z_{2}$.

Give the character character table for the lifting of the 4 linear characters of G / H to G.
(iii) Find the complete character table for G.
(5) (30 pts) Let H be a subgroup of G and let $G=\tau_{1} H+\ldots+\tau_{k} H$ be its coset decomposition. Define a permutation representation L of G by

$$
\begin{aligned}
\sigma\left\langle\tau_{1} H, \ldots, \tau_{k} H\right\rangle & =\left\langle\sigma_{1} H, \ldots, \sigma \tau_{k} H\right\rangle \\
& =\left\langle\tau_{1} E \ldots, \tau_{k} H\right\rangle L(\sigma)
\end{aligned}
$$

so that

$$
I(\sigma)_{i, j}=\chi\left(\tau_{i} H=\sigma \tau_{j} H\right)
$$

(a) Prove that L is a representation.
(b) Consider the special case where $G=\mathcal{S}_{n}$ and $H=\mathcal{S}_{n-1} \times S_{1}=\left\{\sigma \in \mathcal{S}_{n}: \sigma(n)=n\right\}$.
(i) Show that the coset decompostion of G relative to H is given by $G=H+(1, n) H+\ldots(n-1, n) H$ where (i, n) denotes the transposition which interchanges i and n.
(ii) Show that $\chi^{L}(\sigma)=f i x(\sigma)$ where $f i x(\sigma)$ denotes the number of fixed points of σ.
(c) In the special case where $G=\mathcal{S}_{4}$ and $H=S_{3} \times \mathcal{S}_{\mathfrak{i}}$, use part (b) to decompose L a sum of irreducible representations of \mathcal{S}_{4}.
(6) (30 pts) If $S=\left\{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}$ is a subset of $\{1,2, \ldots, n\}$ and $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ is a permutation let $\sigma(S)$ denote the subset $\sigma(S)=\left\{\sigma_{i_{1}}, \sigma_{i_{2}}, \ldots, \sigma_{i_{k}}\right\}$.. In this manner, we can define an action of S_{n} on the k-subsets of $\{1,2, \ldots, n\}$ and induce a representation $A^{(k, n)}$ such that if $S_{1}, \ldots, S_{\binom{n}{k}}$) is a list of the k-element subsets of $\{1, \ldots, n\}$, then

$$
\begin{aligned}
\sigma\left\langle S_{1}, \ldots, S_{\binom{n}{k}}\right\rangle & =\left\langle\sigma\left(S_{1}\right), \ldots, \sigma\left(S_{\binom{n}{k}}\right\rangle\right. \\
& =\left\langle S_{1}, \ldots, S_{\left.\binom{n}{k}\right\rangle A^{(k, n)}(\sigma) .} .\right.
\end{aligned}
$$

(Let $\chi^{(k, n)}$ the character of $A^{(k, n)}$. Find the Frobenius image of $\chi^{(2,4)}$
(b) Use your result in (a) to compute the decomposition of $\chi^{(2,4)}$ into a sum of irreducible characters of S_{4}.
(7) (30 pts) Let H be a subgroup of a finite group G and $A: H \rightarrow G L(n, \mathrm{C})$ be a representation of H.
(a) Prove that for any character ϕ of $G,\left\langle\chi^{A \dagger_{H}^{C}}, \phi\right\rangle_{G}=\left\langle\chi^{A}, \phi \downarrow_{H}^{G}\right\rangle$.
(b) Given an example to show that it is not always the case that if A is irreducible, then $A \uparrow_{H}^{G}$ is irreducible.
(c) Prove that if K is a subgroup of H and $B: K \rightarrow G L(m, \mathrm{C})$ is a representation of K, then the representation $B \dagger_{K}^{G}$ is similar to the representation $\left(B \uparrow_{K}^{H}\right) \dagger_{H}^{G}$.
(8) (30 pts) Let $\mathcal{R}=(R,+, \cdot)$ be an integral domain. Let C be the additive group of R generated by the indentity, that is, let C be the smallest subgroup of R such that C contains 0 and 1 and C is closed under + .
(a) Show that $C=\{n \cdot 1: n \in Z\}$ and hence is a subring of R. Here if $n \geq 0$, then we can define $n \cdot 1$ by induction as $0 \cdot 1=0,1 \cdot 1=1$ and $(n+1) \cdot 1=1+(n \cdot 1)$ and if $n<0$, we define $n \cdot 1=-(|n| \cdot 1)$.

Show that $\phi: Z \rightarrow C$ defined by $\phi(n)=n \cdot 1$ is a surjective ring homomorphism.
(c) Prove that either C is isomorphic to Z or C is isomorphic to Z_{p} for some prime p.
(9) (10 pts.)

Consider the equations

$$
\begin{aligned}
x^{2}+2 y^{2} & =2 \\
x^{2}-x y+y^{2} & =1
\end{aligned}
$$

(a) Let I be the ideal of $C[x, y]$ generated by these equations. Find the G-oebner basis for I relative to lexicographic order where $y>x$.
(b) Find a Groebner basis for $C[x] \cap I$.
(c) Find all solutions to these equations that lie C^{2}.
(d) Find a vector space basis for $C[x, y] / I$.
(10) (40 pts) Let I and J be an ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ where k is field.
(a) Show that $\sqrt{\sqrt{I}}=\sqrt{I}$.
(b) Show that $\sqrt{I \cap J}=\sqrt{I J}=\sqrt{I} \cap \sqrt{J}$
(c) Is $x^{2}-y^{2} \in \sqrt{\left\langle x^{2}+x, x^{2}-y\right\rangle}$?
(d) Is $x^{2}+y^{2} \in \sqrt{\left\langle x+y, x^{2}-y\right\rangle}$?
(11) (40 pts) Let

A $A=\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right)$.
(a) Show that A generates a cyciic group G of order 4.
(b) Show that if $f \in \mathrm{C}[x, y]^{G}$, then f can have no monomials of odd degree.
(b) Use Molien's Theorem to show that the Hilbert series of G is

$$
\phi_{G}(z)=\frac{1+z^{4}}{\left(1-z^{2}\right)\left(1-z^{4}\right)} .
$$

(c) Show that $\mathrm{C}[x, y]^{G}$ is Cohen-Macauly by explicitly finding the generators and separators for $\mathrm{C}[x, y]^{G}$.

