Algebra/Applied Algebra Qualifying Exam Part 1 May 28, 2004

- (15) 1. State and prove the Schur Decomposition Theorem.
- (13) 2. (a) Let $A \in M_n$. Show that if $z^H A z = 0$ for all $z \in \mathbb{C}^n$ then A = 0.
 - (b) Give a 2 × 2 example of $A \in M_2(\mathbb{R})$, where $A \neq 0$, but $x^T A x = 0$ for all $x \in \mathbb{R}^2$.
 - (c) Show that $A \in M_n$ is normal iff $||Ax||_2 = ||A^H x||_2$ for all $x \in \mathbb{C}^n$.
 - (d) Show that $A \in M_n$ is normal iff $\theta(Ax, Ay) = \theta(A^H x, A^H y)$ for all $x, y \in \mathbb{C}^n$.

-

(12) 3. Let \hat{x} be a least squares solution to Ax = b, where $A \in M_{m,n}$ and $m \ge n$. Let A^{\dagger} be the pseudo-inverse of A. Use the Singular Value Decomposition to show that $\tilde{x} = A^{\dagger}b$ is the min 2- norm least squares solution to Ax = b, i.e., show

- (a) \tilde{x} is a least squares solution,
- (b) if \hat{x} is a least square solution then $\|\hat{x}\|_2 \ge \|\tilde{x}\|_2$, and
- (c) \tilde{x} is unique.

Applied Algebra Qualifying Exam, Part III: Spring 2004, May 30 2004

This part will count 60% of total points of the exam.

Do as many problems as you can but you must do at least 3 problems from 1-7 and 2 problems m 8-11.

Let $N = \{0, 1, 2, ...\}, Z = \{0, \pm 1, \pm 2, ...\}, Q$ equal the rationals and C denote the complex numbers.

If $\lambda = (\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k)$ is a partition of n, let A^{λ} denote the irreducible representation of the symmetric group S_n such that the Frobenius image of $\chi^{A^{\lambda}}$ is the Schur function $S_{\lambda}(x_1, \ldots, x_N)$ where N > n.

(1) (30 pts) Let G and H be a finite groups, $A: G \to GL(n, \mathbb{C})$ be a representation of G and $B: H \to GL(m, \mathbb{C})$ be a representation of H.

(a) Define the representation $A \times B : G \times H \rightarrow GL(n \cdot m, \mathbb{C})$

(b) Show that if A and B are irreducible representations, then $A \times B$ is irreducible.

(c) Show that every irreducible representation of $G \times H$ is of the form $A \times B$ where A is an irreducible representation of G and B is an irreducible representation of H.

(2) (30 pts)

(a) Let T be the trivial representation. Decompose $T \uparrow_{S_3 \times S_3}^{S_6}$ as a sum of irreducible representations of S_6 where $S_3 \times S_3$ is the Young subgroup of S_6 consisting of all permuations $\sigma \in S_6$ such that

 $\sigma(1), \sigma(2), \sigma(3) \in \{1, 2, 3\}, \sigma(4), \sigma(5), \sigma(6) \in \{4, 5, 6\}.$

(b) Decompose $A^{(2,4)} \otimes A^{(1,5)}$ as a sum of irreducible representations of S_6 where \otimes represents the Kronecker product of the representations.

Decompose $A^{(1,2)} \times A^{(1,2)} \uparrow_{S_3 \times S_3}^{S_6}$ as a sum of irreducible representations of S_6 . (Here $S_3 \times S_3$ is group described in part (a).)

(3) (30 pts)

(a) Use the Murnaghnam-Nakayama rule to compute the values of the character $A^{(1,4)}$ on the conjugacy classes of S_5 .

(b) Express $\chi^{A^{(1,4)}\downarrow_{S_3}^{S_5}\times S_2}$ as a sum of irreducible characters of $S_3 \times S_2$. Here $S_3 \times S_2$ is the Young subgroup of S_5 consisting of all permutaions $\sigma \in S_6$ such that

$$\sigma(1), \sigma(2), \sigma(3) \in \{1, 2, 3\}, \sigma(4), \sigma(5) \in \{4, 5\}$$

(4) (30 pts) Let G be the group of order 8 defined by the relations

$$a^4 = 1$$
 and $a^2 = b^2 = 1$ and $b^{-1}ab = a^3$.

(a) Show that $ab = b^3 a$ and that every element of G is of the form b^k or $b^k a$ where k = 0, ..., 3.

(b) Given that the conjugacy classes of G are

 $C_{1} = \{1\}$ $C_{2} = \{b^{2}\}$ $C_{3} = \{b, b^{3}\}$ $C_{4} = \{a, b^{2}a\}$ $C_{5} = \{ba, b^{3}a\}$ (b) Show that $H = \{1, b^{2}\}$ is a normal subgroup of G for which G/H is isomorphic to $Z_{2} \times Z_{2}$. Give the character character table for the lifting of the 4 linear characters of G/H to G. (iii) Find the complete character table for G. (5) (30 pts) Let H be a subgroup of G and let $G = \tau_1 H + \ldots + \tau_k H$ be its coset decomposition. Define a permutation representation L of G by

$$\sigma\langle\tau_1H,\ldots,\tau_kH\rangle = \langle\sigma\tau_1H,\ldots,\sigma\tau_kH\rangle$$
$$= \langle\tau_1E,\ldots,\tau_kH\rangle L(\sigma)$$

so that

$$L(\sigma)_{i,j} = \chi(\tau_i H = \sigma \tau_j H)$$

(a) Prove that L is a representation.

- (b) Consider the special case where $G = S_n$ and $H = S_{n-1} \times S_1 = \{\sigma \in S_n : \sigma(n) = n\}$.
- (i) Show that the coset decomposition of G relative to H is given by G = H + (1, n)H + ... (n 1, n)Hwhere (i, n) denotes the transposition which interchanges i and n.
- (ii) Show that $\chi^L(\sigma) = fix(\sigma)$ where $fix(\sigma)$ denotes the number of fixed points of σ .

(c) In the special case where $G = S_4$ and $H = S_3 \times S_1$, use part (b) to decompose L a sum of irreducible representations of S_4 .

(6) (30 pts) If $S = \{1 \le i_1 < i_2 < \cdots < i_k \le n\}$ is a subset of $\{1, 2, \ldots, n\}$ and $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n)$ is a permutation let $\sigma(S)$ denote the subset $\sigma(S) = \{\sigma_{i_1}, \sigma_{i_2}, \ldots, \sigma_{i_k}\}$. In this manner, we can define an action of S_n on the k-subsets of $\{1, 2, \ldots, n\}$ and induce a representation $A^{(k,n)}$ such that if $S_1, \ldots, S_{\binom{n}{k}}$ is a list of the k-element subsets of $\{1, \ldots, n\}$, then

$$\begin{aligned} \sigma \langle S_1, \dots, S_{\binom{n}{k}} \rangle &= \langle \sigma(S_1), \dots, \sigma(S_{\binom{n}{k}}) \rangle \\ &= \langle S_1, \dots, S_{\binom{n}{k}} \rangle \rangle A^{(k,n)}(\sigma) \end{aligned}$$

Let $\chi^{(k,n)}$ the character of $A^{(k,n)}$. Find the Frobenius image of $\chi^{(2,4)}$

(b) Use your result in (a) to compute the decomposition of $\chi^{(2,4)}$ into a sum of irreducible characters of S_4 .

(7) (30 pts) Let H be a subgroup of a finite group G and $A : H \to GL(n, \mathbb{C})$ be a representation of H.

(a) Prove that for any character ϕ of G, $\langle \chi^{A\uparrow_{H}^{G}}, \phi \rangle_{G} = \langle \chi^{A}, \phi \downarrow_{H}^{G} \rangle$.

(b) Given an example to show that it is not always the case that if A is irreducible, then $A \uparrow_{H}^{G}$ is irreducible.

(c) Prove that if K is a subgroup of H and $B: K \to GL(m, \mathbb{C})$ is a representation of K, then the representation $B \uparrow^G_K$ is similar to the representation $(B \uparrow^H_K) \uparrow^G_H$.

(8) (30 pts) Let $\mathcal{R} = (R, +, \cdot)$ be an integral domain. Let C be the additive group of R generated by the indentity, that is, let C be the smallest subgroup of R such that C contains 0 and 1 and C is closed under +.

(a) Show that $C = \{n \cdot 1 : n \in Z\}$ and hence is a subring of R. Here if $n \ge 0$, then we can define $n \cdot 1$ by induction as $0 \cdot 1 = 0$, $1 \cdot 1 = 1$ and $(n+1) \cdot 1 = 1 + (n \cdot 1)$ and if n < 0, we define $n \cdot 1 = -(|n| \cdot 1)$.

Show that $\phi: Z \to C$ defined by $\phi(n) = n \cdot 1$ is a surjective ring homomorphism.

(c) Prove that either C is isomorphic to Z or C is isomorphic to Z_p for some prime p.

(9) (40 pts.)

Consider the equations

$$x^2 + 2y^2 = 2$$
$$x^2 - xy + y^2 = 1$$

(a) Let I be the ideal of C[x, y] generated by these equations. Find the Groebner basis for I relative to lexicographic order where y > x.

(b) Find a Groebner basis for $\mathbf{C}[x] \cap I$.

(c) Find all solutions to these equations that lie C^2 .

(d) Find a vector space basis for $\mathbf{C}[x, y]/I$.

(10) (40 pts) Let I and J be an ideals in $k[x_1, \ldots, x_n]$ where k is field.

- (a) Show that $\sqrt{\sqrt{I}} = \sqrt{I}$.
- (b) Show that $\sqrt{I \cap J} = \sqrt{IJ} = \sqrt{I} \cap \sqrt{J}$

(c) Is
$$x^2 - y^2 \in \sqrt{\langle x^2 + x, x^2 - y \rangle}$$
?

(d) Is
$$x^2 + y^2 \in \sqrt{\langle x + y, x^2 - y \rangle}$$
?

(11) (40 pts) Let

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \,.$$

(a) Show that A generates a cyclic group G of order 4.

- (b) Show that if $f \in \mathbb{C}[x, y]^G$, then f can have no monomials of odd degree.
- (b) Use Molien's Theorem to show that the Hilbert series of G is

$$\phi_G(z) = \frac{1+z^4}{(1-z^2)(1-z^4)}.$$

(c) Show that $C[x, y]^G$ is Cohen-Macauly by explicitly finding the generators and separators for $C[x, y]^G$.