Applied Algebra Qualifying Exam: Part II
 May 27, 2011

Do as many problems as you can, but you must attempt at least 5 problems where 1 of the problems is from problems 1-3, one of the problems is from problems 4-7 and at least 2 of the problems are from problems 7-9. The point values are relative values for this part of the exam. Your final score will be scaled so that this part of the exam will represent 60% of your point total.

Let $\mathbb{N}=\{0,1,2, \ldots\}, \mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}, \mathbb{Q}$ equal the rationals and \mathbb{C} denote the complex numbers. If $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}\right)$ is a partition of n, let A^{λ} denote the irreducible representation of the symmetric group S_{n} such that the Frobenius image of $\chi^{A^{\lambda}}=\chi^{\lambda}$ is the Schur function $S_{\lambda}\left(x_{1}, \ldots, x_{N}\right)$ where $N>n$.

1) (30 pts) Let G be a finite group and $A: G \rightarrow G L(n, \mathbb{C})$ be a representation of G.
(a) Show that if the only matrices S which commute with $A(g)$ for all $g \in G$ are of the form λI, then A is irreducible.
(b) Show that if G is abelian, then there is an invertible matrix T such that for all $g \in G, T A(g) T^{-1}$ is a diagonal matrix.
(c) Show that if $g \in G$ is in the center of G, then $A(g)=c I_{n}$ for some nonzero constant $c \in \mathbb{C}$.
2) (30 pts.) (d) Prove that if $\lambda(x)$ is a linear character of a finite group G, then for any irreducible character χ of G, the function χ^{*} defined by $\chi^{*}(\sigma)=\lambda(\sigma) \chi(\sigma)$ for all $\sigma \in G$ is also an irreducible character of G.
(b) Given a partition λ of n, let $\ell(\lambda)$ denote the number of parts of λ and λ^{\prime} denote its conjugate partition. Let χ_{μ}^{λ} denote the value of the character of the irreducible representation A^{λ} of S_{n} at the conjugacy class indexed by the partition μ. Show that $\chi_{\mu}^{\lambda^{\prime}}=(-1)^{n-\ell(\mu)} \chi_{\mu}^{\lambda}$.
3) (40 pts.) Let $G=\left\{g_{1}, \ldots, g_{k}\right\}$ be a finite group. Introduce variables $x_{g_{1}}, \ldots, x_{g_{k}}$ and consider the $k \times k$ matrix

$$
X=\left[x_{g_{i} g_{j}^{-1}}\right]
$$

Let $X=\sum_{i=1}^{k} A\left(g_{i}\right) x_{g_{i}}$ so that we can define a map $g_{i} \rightarrow A\left(g_{i}\right)$.
(a) Show that A is the left regular representation of G.
(b) Show that $\operatorname{det}(X)=\prod_{\nu=1}^{h} \operatorname{det}\left(\sum_{g \in G} A^{(\nu)}(g) x_{g}\right)^{n_{\nu}}$ where $A^{(1)}, \ldots, A^{(h)}$ are a complete set of representatives of the irreducible representations of G and $n_{\nu}=\operatorname{dim}\left(A^{(\nu)}\right)$ for $\nu=1, \ldots, h$.
c) Use part (b) to show that

$$
\operatorname{det}\left[\begin{array}{ccccc}
x_{0} & x_{1} & x_{2} & \ldots & x_{n-1} \\
x_{n-1} & x_{0} & x_{1} & \ldots & x_{n-2} \\
x_{n-2} & x_{n-1} & x_{0} & \ldots & x_{n-3} \\
\vdots & \vdots & \vdots & ::: & \vdots \\
x_{1} & x_{2} & x_{3} & \ldots & x_{0}
\end{array}\right]=\prod_{r=0}^{n-1}\left(x_{0}+\epsilon^{r} x_{1}+\epsilon^{2 r} x_{2}+\ldots \epsilon^{(n-1) r} x_{n-1}\right)
$$

where $\epsilon=e^{2 \pi i / n}$.
4) (40 pts .)
(a) Use the Murnaghan-Nakayama rule to compute the value of the irreducible characters of S_{5} at the conjugacy class indexed by the partition $(2,3)$.
(b) Find the character table for $S_{3} \times S_{2}$ where $S_{3} \times S_{2}$ is the Young subgroup of S_{5} consisting of all permuations $\sigma \in S_{5}$ such that

$$
\sigma(1), \sigma(2), \sigma(3) \in\{1,2,3\}, \sigma(4), \sigma(5) \in\{4,5\}
$$

(c) Find the values of the character of $A^{(1,4)}$ on the conjugacy classes of S_{5}.
(d) Decompose $A^{(1,4)} \downarrow_{S_{3} \times S_{2}}^{S_{5}}$ as a sum of irreducible representations of $S_{3} \times S_{2}$.
5) (40 pts.)
(a) Let $A^{(1,1,2)} \times A^{(1,2)}$ denote the representation of $S_{4} \times S_{3}$ such that for all $(\sigma, \tau) \in S_{4} \times S_{3}$

$$
A^{(1,1,2)} \times A^{(1,2)}(\sigma, \tau)=A^{(1,1,2)}(\sigma) \otimes A^{(1,2)}(\tau)
$$

where for any matrices A and $B, A \otimes B$ denotes the tensor product of A and B. Decompose $A^{(1,1,2)} \times$ $A^{(1,2)} \uparrow_{S_{4} \times S_{3}}^{S_{8}}$ as a sum of irreducible representations of S_{7}.
(b) Show that $\left\{A^{\lambda} \times A^{\mu}: \lambda \vdash 4\right.$ and $\left.\mu \vdash 3\right\}$ is a complete set of representatives of the irreducible representations of $S_{4} \times S_{4}$ where $A^{\lambda} \times A^{\mu}(\sigma, \tau)=A^{\lambda}(\sigma) \otimes A^{\mu}(\tau)$.

Note: For parts (a) and (b) above, regard $S_{4} \times S_{3}$ as a subgroup of S_{7} by letting

$$
S_{4} \times S_{4}=\left\{\sigma \in S_{7}: \sigma(1), \sigma(2), \sigma(3), \sigma(4) \in\{1,2,3,4\}, \sigma(5), \sigma(6), \sigma(7) \in\{5,6,7\}\right\}
$$

(c) Let T denote the trivial representation. Decompose $T \uparrow_{S_{1} \times S_{3} \times S_{3}}^{S_{7}}$ as a sum of irreducible representations of S_{7} where $S_{1} \times S_{3} \times S_{3}$ is the Young subgroup of S_{7} consisting of all permutations $\sigma \in S_{7}$ such that

$$
\sigma(1)=1, \sigma(2), \sigma(3), \sigma(4) \in\{2,3,4\}, \sigma(5), \sigma(6), \sigma(7) \in\{5,6,7\}
$$

(d) Decompose $A^{(2,2)} \otimes A^{(2,2)}$ as a sum of irreducible representations of S_{4} where \otimes represents the Kronecker product of the representations.
6) (40 pts.) Let S_{4} denote the symmetric group on 4 elements and A_{4} denote the alternating group, i.e. $A_{4}=\left\{\sigma \in S_{4}: \operatorname{sign}(\sigma)=1\right\}$.
(a) Find the conjugacy classes of A_{4}.
(b) Let $D=\{\epsilon,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$. Show that D is a normal subgroup of A_{4} and that A_{4} / D is isomorphic to Z_{3}.
(c) Give the character table for Z_{3}.
(d) Find the lifting of the irreducible characters of Z_{3} to A_{4}.
(e) Use (d) to complete the character table of A_{4}.
(7) (30 pts.)
(a) Two ideals I and J in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are co-maximal if and only if $I+J=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
(i) Prove that I and J are co-maximal if and only if $V(I) \cap V(J)=\emptyset$.
(ii) Show that if I and J are comaximal, then $I J=I \cap J$.
(b) Suppose that I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ where k is field. Show that if $I \subseteq \sqrt{J}$, then there is an $m \geq 1$ such that $I^{m} \subseteq J$. (Hint: Use the Hilbert Basis Theorem.)
(8) (40 pts.)

Consider the equations

$$
\begin{aligned}
x y+x^{2} & =1 \\
y^{2}-2 x^{2} & =-2
\end{aligned}
$$

(a) Let I be the ideal of $\mathbb{C}[x, y]$ generated by these equations. Find the Groebner basis for I relative to lexicographic order where $y>x$.
(b) Find a Groebner basis for $\mathbb{C}[x] \cap I$.
(c) Find all solutions to these equations that lie \mathbb{C}^{2}.
(d) Find a vector space basis for $\mathbb{C}[x, y] / I$.
(9) (40 pts.)
(a) Show that if I is an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $V(I)$ is finite, then $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$ is finite dimensional when considered as a vector space of \mathbb{C}.
(b) Find a reduced Groebner basis for $I=\left\langle x^{2}+x y+y, x y+y^{2}\right\rangle$ with respect to the graded lexicographic order where $x>y$.
(c) Show that $x^{2}+y^{2} \in \sqrt{I}-I$.

