Complex Analysis Qualifying Exam – Fall 2020

Name: _____

Student ID: _____

Instructions:

You do not have to reprove any results from Conway or shown in class. However, if using a homework problem, please make sure you reprove it.

You have 180 minutes to complete the test.

Notation: $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}.$

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		10
Total		70

Problem 1. [10 points.]

Let γ be the closed curve given by the circle $|z - \frac{i}{2}| = 1$ traversed once in the positive (counterclockwise) direction. Compute

$$\int_{\gamma} \frac{\sin(i\pi z/2)}{z^2 + 1} dz.$$

Problem 2. [10 points; 3, 7.]

Let $a \in \mathbb{R}$ and a > 2. Consider the following equation

$$a + z - e^{2z} = 0. (1)$$

(a) Prove that if $z_0 \in {\text{Re}(z) < 0}$ is a solution of the equation (1), then $|z_0 + a| < 1$.

(b) Prove the equation (1) has exactly one solution on the left half plane $\{\operatorname{Re}(z) < 0\}$. Furthermore, prove that this solution must be a real number.

Problem 3. [10 points.]

Let $f:\mathbb{C}\to\mathbb{C}$ be an entire function. Show that the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z)}{n!}, \quad f^{(n)} = \frac{d^n f}{dz^n}$$

converges uniformly on compact subsets of $\mathbb{C}.$

Problem 4. [10 points.]

Find all entire functions $f : \mathbb{C} \to \mathbb{C}$ such that |f(z)| = 2 everywhere on $\{|z| = 1\}$, and $f^{(3)}(0) = -12$. Here $f^{(3)}$ denotes the third derivative of f.

Problem 5. [10 points.]

Let \mathcal{F} be a non-empty family of analytic functions on the unit disc \mathbb{D} . Assume for every $f \in \mathcal{F}$, it holds that

$$\int_{\mathbb{D}} |f(z)| (1-|z|)^5 \, dm < 10.$$

Prove \mathcal{F} is a normal family.

Here dm denotes the standard measure in \mathbb{R}^2 . That is, dm = dxdy for z = x + iy.

Problem 6. [10 points; 3, 7.]

- Let $f : \mathbb{C} \to \mathbb{C}$ be given by $f(z) = z \sin z$.
- (a) Show that f is an odd entire function of order less or equal to 1.
- (b) Possibly using (a), show that f can be represented as a product

$$f(z) = \frac{z^3}{6} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{a_n^2} \right)$$

where $\{a_n\}$ is a sequence of non-zero complex numbers with

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^2} < \infty.$$

Problem 7. [10 points.]

Let \mathbb{D} denote the open unit disc, and let $\mathbb{D}' = \left\{ z \in \mathbb{C} : \left| z + \frac{2}{5} \right| < \frac{2}{5} \right\}$ denote the open disc of center $-\frac{2}{5}$ and radius $\frac{2}{5}$. Let $\Omega = \mathbb{D} \setminus \overline{\mathbb{D}'}$.

Find, with justification, an explicit continuous functions $h: \overline{\Omega} \to \mathbb{R}$, harmonic in Ω , and with boundary values h = 0 on $\partial \mathbb{D}$ and h = 1 on $\partial \mathbb{D}'$.

Hint: You may wish to use a conformal map to change the domain Ω .