Complex Analysis Qualifying Exam - Fall 2020

Name: \qquad

Student ID: \qquad

Instructions:

You do not have to reprove any results from Conway or shown in class. However, if using a homework problem, please make sure you reprove it.

You have 180 minutes to complete the test.
Notation: $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		70
Total		

Problem 1. [10 points.]
Let γ be the closed curve given by the circle $\left|z-\frac{i}{2}\right|=1$ traversed once in the positive (counterclockwise) direction. Compute

$$
\int_{\gamma} \frac{\sin (i \pi z / 2)}{z^{2}+1} d z
$$

Problem 2. [10 points; 3, 7.]
Let $a \in \mathbb{R}$ and $a>2$. Consider the following equation

$$
\begin{equation*}
a+z-e^{2 z}=0 . \tag{1}
\end{equation*}
$$

(a) Prove that if $z_{0} \in\{\operatorname{Re}(z)<0\}$ is a solution of the equation (1), then $\left|z_{0}+a\right|<1$.
(b) Prove the equation (1) has exactly one solution on the left half plane $\{\operatorname{Re}(z)<0\}$. Furthermore, prove that this solution must be a real number.

Problem 3. [10 points.]
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Show that the series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(z)}{n!}, \quad f^{(n)}=\frac{d^{n} f}{d z^{n}}
$$

converges uniformly on compact subsets of \mathbb{C}.

Problem 4. [10 points.]
Find all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $|f(z)|=2$ everywhere on $\{|z|=1\}$, and $f^{(3)}(0)=$ -12 . Here $f^{(3)}$ denotes the third derivative of f.

Problem 5. [10 points.]
Let \mathcal{F} be a non-empty family of analytic functions on the unit disc \mathbb{D}. Assume for every $f \in \mathcal{F}$, it holds that

$$
\int_{\mathbb{D}}|f(z)|(1-|z|)^{5} d m<10
$$

Prove \mathcal{F} is a normal family.
Here $d m$ denotes the standard measure in \mathbb{R}^{2}. That is, $d m=d x d y$ for $z=x+i y$.

Problem 6. [10 points; 3, 7.]
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=z-\sin z$.
(a) Show that f is an odd entire function of order less or equal to 1 .
(b) Possibly using (a), show that f can be represented as a product

$$
f(z)=\frac{z^{3}}{6} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{a_{n}^{2}}\right)
$$

where $\left\{a_{n}\right\}$ is a sequence of non-zero complex numbers with

$$
\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|^{2}}<\infty
$$

Problem 7. [10 points.]
Let \mathbb{D} denote the open unit disc, and let $\mathbb{D}^{\prime}=\left\{z \in \mathbb{C}:\left|z+\frac{2}{5}\right|<\frac{2}{5}\right\}$ denote the open disc of center $-\frac{2}{5}$ and radius $\frac{2}{5}$. Let $\Omega=\mathbb{D} \backslash \overline{\mathbb{D}^{\prime}}$.

Find, with justification, an explicit continuous functions $h: \bar{\Omega} \rightarrow \mathbb{R}$, harmonic in Ω, and with boundary values $h=0$ on $\partial \mathbb{D}$ and $h=1$ on $\partial \mathbb{D}^{\prime}$.

Hint: You may wish to use a conformal map to change the domain Ω.

