Complex Analysis Qualifying Exam – Spring 2020

Name: _____

Student ID: _____

Instructions:

You do not have to reprove any results from Conway or shown in class. However, if using a homework problem, please make sure you reprove it.

You have 180 minutes to complete the test.

Notation: $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}.$

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		10
Total		70

Problem 1. [10 points.]

Let $f(z) = \pi^2 z^5 e^{-2z} - 1$. How many roots does f have in \mathbb{D} ? How many simple roots does f have in \mathbb{D} ?

Hint: $e < \pi$.

Problem 2. [10 points.]

Prove or disprove the following statement.

Let $U = \{z \in \mathbb{C} : |z| > 3\}$. There exists a holomorphic function f in U such that

$$f'(z) = \frac{z^2 + 2}{z(z-1)(z-2)}.$$

Problem 3. [10 points.]

For $a \in (-1,1)$, let $D_a = \{z : |z| < 1, \text{ Im } z > a\}$. For each such a, either find a Möbius transformation of D_a onto the quadrant $Q = \{w = re^{i\theta} : r > 0, 0 < \theta < \frac{\pi}{2}\}$, or show that such a transformation cannot exist.

Problem 4. [7, 3 points.]

Let $G \subset \mathbb{C}$ be a proper open connected subset. Let $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ denote the extended plane.

(i) Assume $\mathbb{C}_{\infty} - G$ is connected. Prove the following statement.

Let f be an analytic function from G to G which is not the identity map. Then f has at most one fixed point in G.

(ii) Is the statement still true if $\mathbb{C}_{\infty} - G$ is not connected? If true, give a proof. If false, give a counterexample.

Problem 5. [10 points.]

Let $A_1 = \mathbb{D} - \{0, \frac{1}{2}\}$ and $A_2 = \mathbb{D} - \{0, -\frac{1}{2}\}$. Find all bijective analytic maps from A_1 to A_2 .

Problem 6. [10 points.]

Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that $|f'(z)| \le e^{|z|}$ and

$$f\left(\sqrt{n}\right) = 0$$

for all positive integers n > 0. Show that f = 0.

Problem 7. [10 points.]

Let \mathcal{H} be the family of harmonic functions $h: \mathbb{D} \to \mathbb{R}$ with h(0) = 1 and h(z) > 0 for all $z \in \mathbb{D}$.

Show that every sequence in \mathcal{H} admits a subsequence that converges uniformly on compact subsets of \mathbb{D} to a function in \mathcal{H} .