Complex Analysis Qualifying Exam - Spring 2020

Name: \qquad

Student ID: \qquad

Instructions:

You do not have to reprove any results from Conway or shown in class. However, if using a homework problem, please make sure you reprove it.

You have 180 minutes to complete the test.
Notation: $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		70
Total		

Problem 1. [10 points.]
Let $f(z)=\pi^{2} z^{5} e^{-2 z}-1$. How many roots does f have in \mathbb{D} ? How many simple roots does f have in \mathbb{D} ?

Hint: $e<\pi$.

Problem 2. [10 points.]
Prove or disprove the following statement.
Let $U=\{z \in \mathbb{C}:|z|>3\}$. There exists a holomorphic function f in U such that

$$
f^{\prime}(z)=\frac{z^{2}+2}{z(z-1)(z-2)} .
$$

Problem 3. [10 points.]
For $a \in(-1,1)$, let $D_{a}=\{z:|z|<1, \operatorname{Im} z>a\}$. For each such a, either find a Möbius transformation of D_{a} onto the quadrant $Q=\left\{w=r e^{i \theta}: r>0,0<\theta<\frac{\pi}{2}\right\}$, or show that such a transformation cannot exist.

Problem 4. [7, 3 points.]
Let $G \subset \mathbb{C}$ be a proper open connected subset. Let $\mathbb{C}_{\infty}=\mathbb{C} \cup\{\infty\}$ denote the extended plane.
(i) Assume $\mathbb{C}_{\infty}-G$ is connnected. Prove the following statement.

Let f be an analytic function from G to G which is not the identity map. Then f has at most one fixed point in G.
(ii) Is the statement still true if $\mathbb{C}_{\infty}-G$ is not connected? If true, give a proof. If false, give a counterexample.

Problem 5. [10 points.]
Let $A_{1}=\mathbb{D}-\left\{0, \frac{1}{2}\right\}$ and $A_{2}=\mathbb{D}-\left\{0,-\frac{1}{2}\right\}$. Find all bijective analytic maps from A_{1} to A_{2}.

Problem 6. [10 points.]
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that $\left|f^{\prime}(z)\right| \leq e^{|z|}$ and

$$
f(\sqrt{n})=0
$$

for all positive integers $n>0$. Show that $f=0$.

Problem 7. [10 points.]
Let \mathcal{H} be the family of harmonic functions $h: \mathbb{D} \rightarrow \mathbb{R}$ with $h(0)=1$ and $h(z)>0$ for all $z \in \mathbb{D}$.
Show that every sequence in \mathcal{H} admits a subsequence that converges uniformly on compact subsets of \mathbb{D} to a function in \mathcal{H}.

