Complex Analysis Qualifying Exam - Fall 2016

Name: \qquad

Student ID: \qquad

Instructions:

You have 3 hours. No textbooks and notes are allowed. Make sure to state clearly the hypotheses of any results used.

Solve at least 7 of the following 8 problems. You have 180 minutes to complete the test.
Notation: $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		80
Total		

Problem 1. [10 points.]
Prove that if f is an entire function such that $\lim _{z \rightarrow \infty} f(z)=\infty$, then f must be a polynomial.

Problem 2. [10 points.]
Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is an analytic function such that $f(0)=0$. Show that

$$
g(z)=\sum_{n=0}^{\infty} f\left(z^{n}\right)
$$

converges to an analytic function on \mathbb{D}.

Problem 3. [10 points.]
Using the calculus of residues, compute

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x
$$

Problem 4. [10 points.]
Let $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ be a continuous function which is analytic on \mathbb{D}. Assume that there exists $0<\alpha \leq 2 \pi$ such that $f\left(e^{i \theta}\right)=0$, for all $\theta \in(0, \alpha)$. Prove that $f(z)=0$, for every $z \in \mathbb{D}$.

Problem 5. [10 points.]
Let $U \subset \mathbb{C}$ be a connected open and let $a \in U$. Let $f_{n}: U \rightarrow \mathbb{D}$ be a sequence of analytic functions such that $f_{n}(a)=0$, for all $n \geq 1$. Prove that there exists an analytic function $f: U \rightarrow \mathbb{D}$ and a subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ which converges uniformly to f on compact subsets of U.

Problem 6. [10 points; 5, 5.]
For $k \geq 1$, let $a_{k}=1-\frac{1}{k^{2}}$. For $n \geq 1$, define $f_{n}: \mathbb{D} \rightarrow \mathbb{D}$ by letting $f_{n}(z)=\prod_{k=1}^{n} \frac{a_{k}-z}{1-a_{k} z}$.
(a) Prove that the sequence $\left\{f_{n}\right\}$ converges to an analytic function $f: \mathbb{D} \rightarrow \mathbb{D}$, uniformly on compact subsets of \mathbb{D}.
(b) Prove that there do not exist an open set $U \subset \mathbb{C}$ and an analytic function $g: U \rightarrow \mathbb{C}$ such that $\overline{\mathbb{D}} \subset U$, and $g(z)=f(z)$, for every $z \in \mathbb{D}$.

Problem 7. [10 points.]
Let $\gamma:[0.1] \rightarrow \mathbb{C}$ be a path such that $\gamma(0)=1$ and $\gamma(t) \neq 0$, for every $t \in[0,1]$. Assume that $\left(f_{t}, D_{t}\right)_{0 \leq t \leq 1}$ is an analytic continuation of $f_{0}(z)=\log z$ along γ. Prove that f_{t} is a branch of the logarithm, for every $t \in[0,1]$.

Problem 8. [10 points; 5, 5.]
Let $u: \mathbb{C} \rightarrow \mathbb{R}$ be a harmonic function such that $\iint|u(x+i y)|^{2} \mathrm{~d} x \mathrm{~d} y<\infty$.
(a) Prove that $u(a)=\frac{1}{\pi r^{2}} \iint_{B_{r}(a)} u(x+i y) \mathrm{d} x \mathrm{~d} y$, for every $a \in \mathbb{C}$ and $r>0$. Here, $B_{r}(a)=\{z \in$ $\mathbb{C}||z-a|<r\}$ denotes the open ball of radius r centered at a.
(b) Prove that $u(z)=0$, for every $z \in \mathbb{C}$.

