Name (PRINT): \qquad PID: \qquad

Signature:

\qquad
Instructions: 3 hours. You may use without proof results proved in Conway up to and including Chapter XI. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.
Notation and terminology: The unit disk is denoted by $\mathbb{D} . G$ is a region, i.e., an open and connected subset of $\mathbb{C} . B(a, r)$ denotes the open disk of radius r centered at a. The space of analytic functions in G is denoted by $H(G)$.

Problem	Points	Score
$\# 1$	15	
$\# 2$	15	
$\# 3$	15	
$\# 4$	15	
$\# 5$	15	
$\# 6$	15	
$\# 7$	15	
Total	105	

Complex Analysis Qualifying Exam

1. Compute the integral $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+5 x^{2}+4} d x$.
2. Let f be analytic on \mathbb{D} with $|f(z)| \leq \frac{1}{2}$ on \mathbb{D} and $f(0)=r \in \mathbb{R}$. Here $0<r<\frac{1}{2}$. (a). Prove that $f(z)$ has no zeros in the disk $\{|z|<2 r\}$.
(b). Can $f(z)$ have a zero on the circle $\{|z|=2 r\}$? If so, find all such functions $f(z)$.

Complex Analysis Qualifying Exam

Page 3
3. Let $A_{1}=\{z \in \mathbb{C}: 0<|z|<1\}$ and $A_{2}=\{z \in \mathbb{C}: 1<|z|<2\}$. Prove A_{1} and A_{2} are not conformally equivalent.
4. Let $b \in \mathbb{D}$ and set $f(z)=z^{7}-2 z^{5}+b$.
(a). How many roots (counting multiplicity) does f have in \mathbb{D} ? How many simple roots does f have in \mathbb{D} ?
(b). How many simple roots does f have in $\{1 \leq|z|<2\}$?
5. Let $f=\frac{1}{(z-1)(z-5)}$.
(a). Prove that there is a sequence of rational functions $R_{n}(z)$ whose poles can only occur at 2 and 6 such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{3 \leq|z| \leq 4}\left|f(z)-R_{n}(z)\right|=0 \tag{1}
\end{equation*}
$$

(b). Does there exist a sequence of rational functions $R_{n}(z)$ whose poles can only occur at 6 such that (1) holds? Justify your answer.

Complex Analysis Qualifying Exam

6. Find all analytic functions f on $\mathbb{C} \backslash\{0\}$ with the following property:

There is some constant $C>0$ such that $|f(z)| \leq C|z|^{2}+\frac{C}{|z|^{\frac{1}{2}}}, \quad \forall z \in \mathbb{C} \backslash\{0\}$.

Complex Analysis Qualifying Exam

Page 7
7. Let $G=\mathbb{D} \backslash\{0\}$ and f be the function on ∂G such that $f(z)=0$ for $|z|=1$ and $f(0)=1$. Show that the Perron function $u(z)$ of f,

$$
u(z)=\sup \left\{\phi(z): \phi \text { is subharmonic and } \forall a \in \partial G, \limsup _{\zeta \rightarrow a} \phi(\zeta) \leq f(a)\right\},
$$

is identically zero.
Hint: Consider the family of functions $u_{\epsilon}(z)=\frac{\log |z|}{\log \epsilon}$ in the annulus $\epsilon<|z|<1$ for $\epsilon>0$.

