(20) 1. Suppose $f(z)=\sum_{n^{m}}^{N} a^{2} z^{n}$ where the $a_{n} \in C$ and $N>0$. Let $M$ be the waximum of $|f(z)|$ on the unit circle about the origin.
i) (5) Show that $\left|a_{0}\right| \leq M$.
ii)(15) Show that $\left|a_{N}\right| \leqslant M$.
(20) 2. Find the number of zeros of $f(z)=z^{7}+2 z^{3}+4$ in the interior of the first quadrant (all $z=x+i y$ with $x$ and $y$ positive).
(20) 3. Suppose that $\alpha, \beta, \gamma, \delta$ are distinct complex numbers. Show that

$$
\begin{aligned}
& \frac{\alpha}{(\alpha-\beta)(\alpha-\gamma)(\alpha-\delta)}+\frac{\beta}{(\beta-\alpha)(\beta-\gamma)(\beta-\delta)}+ \\
& \quad+\frac{\gamma}{(\gamma-\alpha)(\gamma-\beta)(\gamma-\delta)}+\frac{\delta}{(\delta-\alpha)(\delta-\beta)(\delta-\gamma)}=0 .
\end{aligned}
$$

(Hint: this is not an algebra qual.)
(20) 4. Suppose $f(z)$ is analytic at $z=0$. Prove that there is an integer $\pi>0$ such that

$$
\left|f^{(n)}(0)\right|<n^{n} \cdot n!.
$$

(20) 5. Suppose $\left\{f_{n}(z)\right\}_{n 21}$ is a sequence of analytic functions on a reqion $A$ which converges uniformly on $A$ to a function $f(z)$. Show that $f(z)$ is analytic on $A$ and that the sequence of derivatives $\left\{f_{n}^{\prime}(z)\right\}_{n 21}$ converges uniformly to $f^{\prime}(z)$ on compact subsets of $A$.
(20) 6. State and prove the Weierstrass Product Theorem. You may use any general convergence oriteria without proof, but you should state what these criteria are.
(20) 7. Evaluate $\int_{-\infty}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} e^{i t x} d x$ for all real $t 20$.
(20) 8. Find all entire functions $f(z)$ with the property that for all $z$,

$$
|f(z)| s e^{x y} .
$$

(Here, $x$ and $y$ are the real and imaginary parts of $z$.

