Complex Analysis Qualifying Exam – Spring 2022

Name: _____

Student ID: _____

Instructions: 3 hours. Open book: Conway and personal notes from lectures may be used. You may use without proof results proved in Conway I-VIII, X-XI. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.

Notation and terminology: A region is an open and connected subset of \mathbb{C} . The space of analytic (resp., meromorphic) functions in G is denoted by H(G) (resp., M(G)).

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
Total		60

Problem 1. [10 points.]

Let $G \subset \mathbb{C}$ be a bounded, simply connected region and let $a \in G$. Let f be an analytic self-map of G (i.e., $f(G) \subset G$) such that f(a) = a and f'(a) = 1. Show that f(z) = z. Problem 2. [10 points; 4, 4, 2.]

Let p(z) be a nonconstant polynomial of z. Let $G \subset \mathbb{C}$ be a component of the set $\{z : |p(z)| < 1\}$.

- (a) Show that p has at least one zero in G.
- (b) Let f be analytic in G with $|f| \leq 1$. Assume that f has a zero at every zero of p such that the order of vanishing of f is at least that of p. Show that $|f(z)| \leq |p(z)|$ and if z = a is a zero of p of order k, then $|f^{(k)}(a)| \leq |p^{(k)}(a)|$.
- (c) If either |f(a)| = |p(a)| for some z = a that is not a zero of p or if $|f^{(k)}(a)| = |p^{(k)}(a)|$ for some z = a that is a zero of p of order k, then f(z) = cp(z) for some constant c.

Problem 3. [10 points.]

Consider the function

$$f(z) = \frac{z^2 + 1}{z^2 - 1}$$

in $G = \{z \colon |z| > 2\}$. Does f have a primitive in G (i.e., $F \in H(G)$ such that F' = f)? Prove your assertion.

Problem 4. [10 points.]

Let $G \subset \mathbb{C}$ be a region such that $0 \notin G$ and G is *not simply connected*. Show that the following are equivalent:

- (i) $\mathbb{C}_{\infty} \setminus G$ has precisely two components F_0, F_{∞} such that $0 \in F_0, \infty \in F_{\infty}$.
- (ii) Every $f \in H(G)$ can be approximated in H(G) by rational functions with poles only in $\{0, \infty\}$.

Problem 5. [10 points.]

Let $G \subset \mathbb{C}$ be an open set, $\{f_n\}$ a sequence in M(G), and f a meromorphic function such that $f_n \to f$ in M(G). Suppose $a \in G$ is a pole of f. Show that there is a sequence $\{a_n\}$ in G such that $a_n \to a$ and f_n has a pole at a_n for sufficiently large n.

Problem 6. [10 points.]

Let h be a bounded harmonic function on the unit disc $\mathbb{D} = \{z : |z| < 1\}$. Assume that

$$\limsup_{z \to a} h(z) \le 0$$

for all $a \in \partial \mathbb{D} \setminus \{1\}$. Show that $h \leq 0$ in \mathbb{D} .