Complex Analysis Qualifying Exam - Spring 2022

Name: \qquad

Student ID: \qquad

Instructions: 3 hours. Open book: Conway and personal notes from lectures may be used. You may use without proof results proved in Conway I-VIII, X-XI. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.

Notation and terminology: A region is an open and connected subset of \mathbb{C}. The space of analytic (resp., meromorphic) functions in G is denoted by $H(G)$ (resp., $M(G)$).

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		60
Total		

Problem 1. [10 points.]
Let $G \subset \mathbb{C}$ be a bounded, simply connected region and let $a \in G$. Let f be an analytic self-map of G (i.e., $f(G) \subset G$) such that $f(a)=a$ and $f^{\prime}(a)=1$. Show that $f(z)=z$.

Problem 2. [10 points; 4, 4, 2.]
Let $p(z)$ be a nonconstant polynomial of z. Let $G \subset \mathbb{C}$ be a component of the set $\{z:|p(z)|<1\}$.
(a) Show that p has at least one zero in G.
(b) Let f be analytic in G with $|f| \leq 1$. Assume that f has a zero at every zero of p such that the order of vanishing of f is at least that of p. Show that $|f(z)| \leq|p(z)|$ and if $z=a$ is a zero of p of order k, then $\left|f^{(k)}(a)\right| \leq\left|p^{(k)}(a)\right|$.
(c) If either $|f(a)|=|p(a)|$ for some $z=a$ that is not a zero of p or if $\left|f^{(k)}(a)\right|=\left|p^{(k)}(a)\right|$ for some $z=a$ that is a zero of p of order k, then $f(z)=c p(z)$ for some constant c.

Problem 3. [10 points.]
Consider the function

$$
f(z)=\frac{z^{2}+1}{z^{2}-1}
$$

in $G=\{z:|z|>2\}$. Does f have a primitive in G (i.e., $F \in H(G)$ such that $F^{\prime}=f$)? Prove your assertion.

Problem 4. [10 points.]
Let $G \subset \mathbb{C}$ be a region such that $0 \notin G$ and G is not simply connected. Show that the following are equivalent:
(i) $\mathbb{C}_{\infty} \backslash G$ has precisely two components F_{0}, F_{∞} such that $0 \in F_{0}, \infty \in F_{\infty}$.
(ii) Every $f \in H(G)$ can be approximated in $H(G)$ by rational functions with poles only in $\{0, \infty\}$.

Problem 5. [10 points.]
Let $G \subset \mathbb{C}$ be an open set, $\left\{f_{n}\right\}$ a sequence in $M(G)$, and f a meromorphic function such that $f_{n} \rightarrow f$ in $M(G)$. Suppose $a \in G$ is a pole of f. Show that there is a sequence $\left\{a_{n}\right\}$ in G such that $a_{n} \rightarrow a$ and f_{n} has a pole at a_{n} for sufficiently large n.

Problem 6. [10 points.]
Let h be a bounded harmonic function on the unit disc $\mathbb{D}=\{z:|z|<1\}$. Assume that

$$
\limsup _{z \rightarrow a} h(z) \leq 0
$$

for all $a \in \partial \mathbb{D} \backslash\{1\}$. Show that $h \leq 0$ in \mathbb{D}.

