Part AB

September 10, 2002
Print Name \qquad
Signature \qquad

$\# 1$	25	
$\# 2$	20	
$\# 3$	25	
$\# 4$	10	
$\# 5$	10	
$\# 6$	15	
Part AB	105	
Part C	45	
Total	150	

1. (15) (a) State and prove the Schur Decomposition Theorem.
(b) Use it to prove: A has n orthonormal eigenvectors iff $A^{H} A=A A^{H}$, where $A \in \mathbb{C}^{n \times n}$.
(20) 2. (a) Let A be $m \times n, m>n, B=[A \mid z]$. Show that $\sigma_{1}(B) \geq \sigma_{1}(A)$ and $\sigma_{n+1}(B) \leq$ $\sigma_{n}(A)$.
(b) Let A be $m \times n, m \geq n, C=\left[\begin{array}{c}A \\ v^{T}\end{array}\right]$. Show that $\sigma_{n}(C) \geq \sigma_{n}(A)$ and $\sigma_{1}(A) \leq \sigma_{1}(C) \leq \sqrt{\sigma_{1}(A)^{2}+v^{T} v}$.
(10) 3. (a) Use Gershgorin's Theorem to prove that a real symmetric diagonally dominant matrix with positive diagonal elements is positive definite.
(b) Show that if the single shift $Q R$ method converges, then the convergence is: (a) quadratic for general matrices (b) cubic for symmetric matrices
(10) 4. Prove that $\left\|B(\lambda)-A^{+}\right\|_{2}=\frac{\lambda}{\sigma_{r}\left(\sigma_{r}^{2}+\lambda\right)}$, where $B(\lambda)=\left(A^{T} A+\lambda I\right)^{-1} A^{T}, \lambda>0, A$ is $m \times n, m \geq n, r=\operatorname{rank}(A)$.
(10) 5. Let A be $n \times n$, nonsingular, and $A=Q R$, where Q is orthogonal and R is upper triangular with positive diagonal. Prove that Q and R are unique.
(15) 6. Prove that if A is symmetric positive definite, $\max _{i, j}\left|a_{i j}\right|=1$, then $\max _{i, j, k}\left|a_{i j}^{(k)}\right|=1$ under $L D L^{T}$ (or $L U$) decomposition.

Numerical Analysis Qualifying Examination

September 10, 2002
NAME
Signature

N \quad| $\# 1$ | 15 | |
| :---: | :---: | :---: |
| $\# 2$ | 15 | |
| $\# 3$ | 15 | |
| Total | 45 | |

Question 1. Let $f \in \mathcal{C}^{4}(a, b)$, and let $x_{0}=a<x_{1}<\ldots<x_{n-1}<x_{n}=b$. Let s be the \mathcal{C}^{2} natural cubic spline interpolant of f and let g be any other \mathcal{C}^{2} function satisfying $g\left(x_{i}\right)=f\left(x_{i}\right), 0 \leq i \leq n, g^{\prime \prime}\left(x_{0}\right)=g^{\prime \prime}\left(x_{n}\right)=0$. Prove

$$
\left\|s^{\prime \prime}\right\|_{\mathcal{L}^{2}(a, b)} \leq\left\|g^{\prime \prime}\right\|_{\mathcal{L}^{2}(a, b)}
$$

Question 2. Find the one-point Gauss-Quadrature Rule of the form

$$
\int_{0}^{1} f(x) \sqrt{x} d x \approx A f(\alpha)
$$

Question 3. Define the terms:
a. Consistency
b. Stability
c. Convergence
as they relate to a multi-step formula for solving the initial value problem $y^{\prime}=f(y)$, $y(0)=y_{0}$. Apply these concepts to analyze the two step formula

$$
y_{k+1}=y_{k-1}+2 h f\left(y_{k}\right) .
$$

