Numerical Analysis Qualifying Examination

September 8, 2006

NAME					
Signature	-		$\# 1$	20	
:---:	:---:	:---:			
$\# 2$	20				
$\# 3$	20				
Total	60				

Question 1. In this problem we will analyze the case of Lagrange interpolation on a set of distinct knots $x_{0}<x_{1}<\ldots<x_{n}$ with corresponding function values $f\left(x_{i}\right), 0 \leq i \leq n$.
a. Show how to construct the Lagrange interpolant $p_{n}(x)$ satisfying $p_{n}\left(x_{i}\right)=f\left(x_{i}\right), 0 \leq i \leq n$ using divided differences.
b. Prove

$$
f(x)-p_{n}(x)=f\left[x, x_{0}, x_{1}, \ldots, x_{n}\right] \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Question 2. Define the terms:
a. Consistency
b. Stability
c. Convergence
as they relate to a multistep formula. Apply these concepts to analyze the two step formula

$$
y_{k+1}=y_{k-1}+2 h f\left(y_{k}\right)
$$

Question 3. Let

$$
\mathcal{I}(f)=\int_{-1}^{1} f(x) \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)=\mathcal{Q}(f)
$$

a. Compute the knots and weights such that $\mathcal{Q}(f)$ is the two point Gaussian quadrature formula.
b. Determine the order of the quadrature formula computed in part a.
c. Write down an expression for the error $|\mathcal{I}(f)-\mathcal{Q}(f)|$.

Numerical Analysis Qualifying Exam
Parts B and C
September 8, 2006
Name \qquad

$\# 1$	20	
$\# 2$	20	
$\# 3$	20	
$\# 4$	20	
$\# 5$	20	
B-C	100	
A	60	
Total	160	

(20) 1. Let the computed L and U satisfy $A+E=L U$, where L is unit lower triangular and U is upper triangular. Derive the bound on $E:\left|E_{i j}\right| \leq(3+u) u \max (i-1, j) g$, $g=\max _{k} \max _{i, j}\left|a_{i j}^{(k)}\right|$.
(20) 2. Prove that \hat{x} is a least squares solution to $r=A x-b$, where A is $m \times n$ and $m \geq n$, iff \hat{x} satisfies the normal equations.
(20) 3. (a) Prove that if A is positive semi-definite, then its eigenvalues are non-negative.
(b) Prove that if A is real symmetric, then A is positive definite iff its eigenvalues are positive.
(c) Let $B=\left[\begin{array}{c}A \\ a^{T}\end{array}\right]$, where A is $m \times n, m \geqslant n$. Prove that $\sigma_{n}(B) \geqslant \sigma_{n}(A)$ and $\sigma_{1}(A) \leqslant \sigma_{1}(B) \leqslant \sqrt{\sigma_{1}(A)^{2}+\|a\|_{2}^{2}}$.
4. Let A be $m \times n$.
(a) Prove that if $A^{+}= \begin{cases}\left(A^{T} A\right)^{-1} A^{T} & \text { if } \operatorname{rank}(A)=n \\ A^{T}\left(A A^{T}\right)^{-1} & \text { if } \operatorname{rank}(A)=m .\end{cases}$
(b) Prove that $\left\|B\left(\lambda-A^{+}\right)\right\|_{2}=\frac{\lambda}{\sigma_{r}\left(\sigma_{r}^{2}+\lambda\right)}$, where $B(\lambda)=\left(A^{T} A+\lambda I\right)^{-1} A^{T}$, $\lambda>0, m \geqslant n, \operatorname{rank}(A)=r$.
(20) 5. Let A be symmetric positive definite.
(a) Prove that $a_{i i}>0$ for all i and $\left|a_{i j}\right|<\left(a_{i i}+a_{j j}\right) / 2$ for $i \neq j$.
(b) Prove that $A=L D L^{T}$ exists, where L is unit lower triangular and D is diagonal with positive diagonal elements.
(c) Prove that $\max _{k} \max _{i, j}\left|a_{i j}^{(k)}\right|=\max _{i, j}\left|a_{i j}\right|$

