MATH 270ABC: Numerical Analysis

Instructor: Randolph Bank

Fall Quarter 2010 Qualifying Examination September 9, 2010

	#1	25
	#2	25
	#3	25
	#4	25
NAME	#5	25
SIGNATURE	#6	25
	#7	25
	#8	25

Total

200

Question 1. Let A be an $n \times n$ nonsingular matrix. We consider the solution of the linear system Ax = b. Suppose we have an approximate solution \hat{x} to this system, and let $r = b - A\hat{x}$ be the residual. Prove

$$\frac{\|\hat{x}-x\|}{\|x\|} \leq Cond(A)\frac{\|r\|}{\|b\|}$$

where $\|\cdot\|$ is any vector norm, and Cond(A) is the condition number of A with respect to the induced matrix norm.

Question 2. Let A be an $n \times n$ matrix. Prove (by induction) Schur's Theorem: $A = UTU^t$, where U is a unitary matrix, and T is upper triangular.

Question 3. Let A and B be symmetric, positive definite $n \times n$ matrices. Assume there exist positive constants a and b such that

$$a \leq \frac{x^t A x}{x^t B x} \leq b$$

for all $x \neq 0$. Consider the solution of Ax = c by the iterative method:

$$B(x_{k+1} - x_k) = \omega(c - Ax_k)$$

where x_0 is given and $\omega = 2/(a+b)$. Prove:

$$||e_k||_A \le \left(\frac{b-a}{b+a}\right)^k ||e_0||_A$$

where $e_k = x - x_k$, and $||x||_A^2 = x^t A x$.

Question 4. Let $\phi(x)$ be a scalar function of the vector variable x. Suppose $\phi(x)$ is continuous with continuous first and second partial derivatives, and suppose that the Hessian is symmetric and uniformly positive definite.

- **a.** Formally define Newton's method with line search for solving the optimization problem $\min_x \phi(x)$.
- **b.** Let p_k be the Newton search direction. Show that $\partial \phi(x_k + \alpha p_k)/\partial \alpha < 0$ at $\alpha = 0$. Why is this fact significant for the line search?

Question 5. Let

$$\mathcal{I}(f) = \int_{-1}^{1} f(x) dx$$

We consider a Gaussian quadrature formula of the form

$$\mathcal{Q}(f) = w_1 f(x_1) + w_2 f(x_2)$$

- **a.** Compute the weights w_i and knots x_i to maximize the order.
- **b.** Using the Peano Kernel Theorem, prove

$$|\mathcal{I}(f) - \mathcal{Q}(f)| \le C_0 \|f^{iv}\|_{\infty[-1,1]}.$$

c. Derive a composite formula $\mathcal{Q}_c(f)$, using the basic rule \mathcal{Q} , for approximating

$$\mathcal{I}(f) = \int_{a}^{b} f(x) dx$$

on a uniform mesh of n intervals with h = (b - a)/n,

 \mathbf{d} . Prove

$$|\mathcal{I}_c(f) - \mathcal{Q}_c(f)| \le C_0(b-a) \left(\frac{h}{2}\right)^4 \|f^{iv}\|_{\infty[a,b]}$$

Question 6. In this problem we will analyze the case of continuous piecewise quadratic interpolation on a mesh of n + 1 knots $x_0 < x_1 < \cdots < x_n$. We will also need the interval midpoints $x_{i+1/2} = (x_i + x_{i+1})/2$.

- **a.** Show the the dimension of the space S of continuous piecewise quadratic polynomials is N = 2n + 1.
- **b.** We will use the *nodal* basis functions. There are two types: *hat functions*, which satisfy

 $\phi_i(x_j) = \delta_{ij} \qquad \phi_i(x_{j+1/2}) = 0 \qquad 0 \le i \le n,$

and *bump functions*, which satisfy

$$\phi_{i+1/2}(x_j) = 0$$
 $\phi_{i+1/2}(x_{j+1/2}) = \delta_{ij}$ $0 \le i \le n-1.$

Draw a picture of both types of basis functions.

c. Let f^* be the continuous piecewise quadratic interpolant for f. Prove, using the Peano Kernel Theorem,

$$\|f - f^*\|_2 \le Ch^3 \|f'''\|_2$$
$$\|f' - f^{*'}\|_2 \le Ch^2 \|f'''\|_2$$

Question 7. Let y' = f(y), $y(0) = y_0$, $x_k = kh$, k = 0, 1, ..., where h > 0 is fixed. Let $p \ge 0, r \ge 0$ be integers. From

$$\int_{x_{k-p}}^{x_{k+1}} y' \, dx = \int_{x_{k-p}}^{x_{k+1}} f(y) \, dx$$

we get

$$y(x_{k+1}) = y(x_{k-p}) + \int_{x_{k-p}}^{x_{k+1}} f(y) \, dx$$

A multistep method is obtained by interpolating f at $x_{k+1}, x_k, \ldots, x_{k-r+1}$ by a polynomial of degree r, and then integrating that interpolating polynomial exactly.

- a. Prove that any multistep method derived in this fashion is *consistent*.
- **b.** Prove the scheme is *stable* is p = 0 and *weakly stable* is p > 0.

 ${\bf Question}~{\bf 8.}$ Prove Gronwall's Lemma: Let

$$y' \le \kappa y + \tau$$

for $0 \le t \le T$, and $\tau, \kappa, y \ge 0, \tau$ and κ constant. Then

$$\max_{0 \le t \le T} y(t) \le e^{\kappa T} y(0) + \frac{\tau}{\kappa} \left(e^{\kappa T} - 1 \right).$$