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1 Numerical Linear Algebra (270A)

Question 1.1. Let A 2 Rn⇥n, and let k · k
p

denote the standard l

p norms on Rn, 1  p  1.

(a) Show the following norm equivalence relations for the l

p-norms on Rn:

kuk1  kuk2  kuk1 
p
nkuk2  nkuk1, 8u 2 Rn

,

and then show the following induced matrix norm and spectral radius relationships:
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p
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p

.

(b) Assume A is invertible and use the results from (a) to derive analogous relationships for 
p

(A).

(c) Assume A is invertible, and Ax = b and A(x+ �x) = (b+ �b) for some x, b, �x, �b 2 Rn. Show
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Question 1.2. Let A 2 Rm⇥n, m � n, and consider the overdetermined system:

Ax = b, where x 2 Rn

, b 2 Rm

.

(a) Formulate the minimization problem that defines the least-squares solution, and derive the
normal equations from this problem.

(b) Show that AT

A is nonsingular if and only if A has full rank.

(c) Identify the projector P arising in least-squares, and show how to exploit a QR factorization.

Question 1.3. Let A,B 2 Rn⇥n be SPD matrices.

(a) Show that A defines an inner-product and norm

(u, v)
A

= (Au, v)2, kuk
A

= (u, u)1/2
A

,

where (u, v)2 is the usual Euclidean 2-inner-product.

(b) Starting with the Caley-Hamilton Theorem, derive the Conjugate Gradient method for solving
the preconditioned linear system: BAu = Bf . Mathematically justify each step of the deriva-
tion. The derivation will be based around building up an expanding set of Krylov subspaces,
exploiting a 3-term recursion for generating an A-orthogonal bases for these subspaces, and
enforcing minimization of the A-norm of the error at each iteration of the method.
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2 Numerical Approximation and Nonlinear Equations (270B)

Question 2.1. Let F : D ⇢ Rn ! Rn be continuously di↵erentiable on an open convex set D.

(a) Derive the following expansion with integral remainder:

F (x+ h) = F (x) + F

0(x)h+

Z 1

0

�
F

0(x+ ⇠h)� F

0(x)
 
h d⇠,

and then use this expansion to derive Newton’s method for F (x) = 0.

(b) Assume that F (x⇤) = 0 for some x

⇤ 2 D, and that F

0(x⇤) is nonsingular. Prove the basic
convergence theorem for Newton’s method: There exists an open neighborhood S ⇢ D con-
taining x

⇤ such that, for any x0 2 S, the Newton iterates are well-defined, remain in S, and
converge to x

⇤ at q-superlinear rate.

(c) Show that if the Jacobian F

0(x) is Lipschitz in the set S in part (b) for some uniform Lipschitz
constant, then the convergence rate is q-quadratic.

Question 2.2. Let f : Rn ! R, c : Rn ! Rm, 0 < m < n, and consider the problem:

min
x2Rn

f(x),

subject to c(x) = 0.

Using some basic ideas from linear algebra, prove the main result that leads to the method of
Lagrange Multipliers for this problem: If f and c are di↵erentiable at a feasible point x⇤, then

rf(x⇤)T p � 0, 8p such that c0(x⇤)p = 0,

if and only if there exists a vector �⇤ 2 Rm such that rf(x⇤) = c

0(x⇤)T�⇤
.

Question 2.3. Consider the following tabulated information about a function f : R ! R:

x f(x)
0 1
1 1
2 9

(a) Construct the (unique) quadratic interpolation polynomial p2(x) which interpolates the data.

(b) If the function f(x) that generated the above data was actually the cubic polynomial P3(x) =
2x3 � 2x2 + 1, derive an error bound (a fairly “tight” one) for the interval [0, 2].

(c) Use the composite trapezoid rule with two intervals to construct an approximation to:

Z 2

0
f(x) dx,

and give an expression for the error.
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3 Numerical Ordinary Di↵erential Equations (270C)

Question 3.1. We consider now the problem of best L

p-approximation of a function u(x) = x

4

over the interval [0, 1] from a subspace V ⇢ L

p([0, 1]).

(a) Determine the best L2-approximation in the subspace of linear functions; i.e., V = span{1, x},
and justify the technique you use.

(b) Precisely formulate the best approximation problem in the case p 6= 2, and propose an algo-
rithm for finding the solution.

(c) Let X be a general Hilbert space, and let U ⇢ X be a subspace. Prove that the orthogonal
projection of u onto Pu 2 U is the best approximation, and that this projection is unique.

Question 3.2. Consider the initial value problem in ordinary di↵erential equations:

y

0 = f(t, y), t 2 (a, b)

y(a) = ↵.

(a) Derive the Taylor method of order 2 using Taylor expansion of the solution to the ODE.

(b) Derive the Runge-Kutta method of order 2 (by matching terms in the Taylor method).

(c) Consider the multistep method (3-step Adams-Bashford):

w0 = ↵, w1 = ↵1, w2 = ↵2,

w

i+1 = w

i

+
h

12
[23f(t

i

, w

i

)� 16f(t
i�1, wi�1) + 5f(t

i�2, wi�2)], i = 2, 3, . . . , N � 1.

Determine the local truncation error, and examine the stability using the root condition.
Finally, draw a conclusion about the convergence properties of the method.


