Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiner: Michael Holst

9am-12pm
Friday May 26, 2017

Name

$\# 1.1$	25	
$\# 1.2$	25	
$\# 1.3$	25	
$\# 2.1$	25	
$\# 2.2$	25	
$\# 2.3$	25	
$\# 3.1$	25	
$\# 3.2$	25	
Total	200	

- Put your name in the box provided and staple exam to your solutions.
- Write your name clearly on every sheet of paper you submit.

1 Numerical Linear Algebra (270A)

Question 1.1. Let $A \in \mathbb{R}^{n \times n}$, and let $\|\cdot\|_{p}$ denote the standard l^{p} norms on $\mathbb{R}^{n}, 1 \leq p \leq \infty$.
(a) Show the following norm equivalence relations for the l^{p}-norms on \mathbb{R}^{n} :

$$
\|u\|_{\infty} \leq\|u\|_{2} \leq\|u\|_{1} \leq \sqrt{n}\|u\|_{2} \leq n\|u\|_{\infty}, \quad \forall u \in \mathbb{R}^{n}
$$

and then show the following induced matrix norm and spectral radius relationships:

$$
\|A\|_{1} \leq \sqrt{n}\|A\|_{2} \leq n\|A\|_{1}, \quad\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2} \leq n\|A\|_{\infty}, \quad \rho(A) \leq\|A\|_{p}
$$

(b) Assume A is invertible and use the results from (a) to derive analogous relationships for $\kappa_{p}(A)$.
(c) Assume A is invertible, and $A x=b$ and $A(x+\delta x)=(b+\delta b)$ for some $x, b, \delta x, \delta b \in \mathbb{R}^{n}$. Show

$$
\frac{\|\delta x\|_{p}}{\|x\|_{p}} \leq \kappa_{p}(A) \frac{\|\delta b\|_{p}}{\|b\|_{p}}, \quad \frac{\|\delta b\|_{p}}{\|b\|_{p}} \leq \kappa_{p}(A) \frac{\|\delta x\|_{p}}{\|x\|_{p}}, \quad 1 \leq p \leq \infty
$$

Question 1.2. Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and consider the overdetermined system:

$$
A x=b, \quad \text { where } x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}
$$

(a) Formulate the minimization problem that defines the least-squares solution, and derive the normal equations from this problem.
(b) Show that $A^{T} A$ is nonsingular if and only if A has full rank.
(c) Identify the projector P arising in least-squares, and show how to exploit a QR factorization.

Question 1.3. Let $A, B \in \mathbb{R}^{n \times n}$ be SPD matrices.
(a) Show that A defines an inner-product and norm

$$
(u, v)_{A}=(A u, v)_{2}, \quad\|u\|_{A}=(u, u)_{A}^{1 / 2}
$$

where $(u, v)_{2}$ is the usual Euclidean 2-inner-product.
(b) Starting with the Caley-Hamilton Theorem, derive the Conjugate Gradient method for solving the preconditioned linear system: $B A u=B f$. Mathematically justify each step of the derivation. The derivation will be based around building up an expanding set of Krylov subspaces, exploiting a 3 -term recursion for generating an A-orthogonal bases for these subspaces, and enforcing minimization of the A-norm of the error at each iteration of the method.

2 Numerical Approximation and Nonlinear Equations (270B)

Question 2.1. Let $F: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable on an open convex set D.
(a) Derive the following expansion with integral remainder:

$$
F(x+h)=F(x)+F^{\prime}(x) h+\int_{0}^{1}\left\{F^{\prime}(x+\xi h)-F^{\prime}(x)\right\} h d \xi,
$$

and then use this expansion to derive Newton's method for $F(x)=0$.
(b) Assume that $F\left(x^{*}\right)=0$ for some $x^{*} \in D$, and that $F^{\prime}\left(x^{*}\right)$ is nonsingular. Prove the basic convergence theorem for Newton's method: There exists an open neighborhood $S \subset D$ containing x^{*} such that, for any $x_{0} \in S$, the Newton iterates are well-defined, remain in S, and converge to x^{*} at q-superlinear rate.
(c) Show that if the Jacobian $F^{\prime}(x)$ is Lipschitz in the set S in part (b) for some uniform Lipschitz constant, then the convergence rate is q-quadratic.

Question 2.2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, 0<m<n$, and consider the problem:

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x), \\
\text { subject to } c(x)=0 .
\end{gathered}
$$

Using some basic ideas from linear algebra, prove the main result that leads to the method of Lagrange Multipliers for this problem: If f and c are differentiable at a feasible point x^{*}, then

$$
\nabla f\left(x^{*}\right)^{T} p \geq 0, \quad \forall p \text { such that } c^{\prime}\left(x^{*}\right) p=0
$$

if and only if there exists a vector $\lambda^{*} \in \mathbb{R}^{m}$ such that $\nabla f\left(x^{*}\right)=c^{\prime}\left(x^{*}\right)^{T} \lambda^{*}$.

Question 2.3. Consider the following tabulated information about a function $f: \mathbb{R} \rightarrow \mathbb{R}$:

x	$\mathrm{f}(\mathrm{x})$
0	1
1	1
2	9

(a) Construct the (unique) quadratic interpolation polynomial $p_{2}(x)$ which interpolates the data.
(b) If the function $f(x)$ that generated the above data was actually the cubic polynomial $P_{3}(x)=$ $2 x^{3}-2 x^{2}+1$, derive an error bound (a fairly "tight" one) for the interval $[0,2]$.
(c) Use the composite trapezoid rule with two intervals to construct an approximation to:

$$
\int_{0}^{2} f(x) d x
$$

and give an expression for the error.

3 Numerical Ordinary Differential Equations (270C)

Question 3.1. We consider now the problem of best L^{p}-approximation of a function $u(x)=x^{4}$ over the interval $[0,1]$ from a subspace $V \subset L^{p}([0,1])$.
(a) Determine the best L^{2}-approximation in the subspace of linear functions; i.e., $V=\operatorname{span}\{1, x\}$, and justify the technique you use.
(b) Precisely formulate the best approximation problem in the case $p \neq 2$, and propose an algorithm for finding the solution.
(c) Let X be a general Hilbert space, and let $U \subset X$ be a subspace. Prove that the orthogonal projection of u onto $P u \in U$ is the best approximation, and that this projection is unique.

Question 3.2. Consider the initial value problem in ordinary differential equations:

$$
\begin{aligned}
y^{\prime} & =f(t, y), \quad t \in(a, b) \\
y(a) & =\alpha .
\end{aligned}
$$

(a) Derive the Taylor method of order 2 using Taylor expansion of the solution to the ODE.
(b) Derive the Runge-Kutta method of order 2 (by matching terms in the Taylor method).
(c) Consider the multistep method (3-step Adams-Bashford):

$$
\begin{aligned}
w_{0} & =\alpha, \quad w_{1}=\alpha_{1}, \quad w_{2}=\alpha_{2}, \\
w_{i+1} & =w_{i}+\frac{h}{12}\left[23 f\left(t_{i}, w_{i}\right)-16 f\left(t_{i-1}, w_{i-1}\right)+5 f\left(t_{i-2}, w_{i-2}\right)\right], \quad i=2,3, \ldots, N-1 .
\end{aligned}
$$

Determine the local truncation error, and examine the stability using the root condition. Finally, draw a conclusion about the convergence properties of the method.

