Math 270abc: Numerical Analysis

Instructor: Randolph Bank

Spring Quarter 2018
Qualifying Examination
May 23, 2018

Name
Signature

$\# 1$	25	
$\# 2$	25	
$\# 3$	25	
$\# 4$	25	
$\# 5$	25	
$\# 6$	25	
$\# 7$	25	
$\# 8$	25	
Total	200	

Question 1. Let A be an $n \times n$ nonsingular matrix.
a. Prove $P A=L U$, where P is a permutation matrix, L is unit lower triangular and U is upper triangular.
b. Define the algorithm of partial pivoting which can be used to determine the permutation matrix P in the factorization. Using the simple 2×2 matrix,

$$
A=\left(\begin{array}{ll}
\delta & 1 \\
1 & 1
\end{array}\right)
$$

where $|\delta| \ll 1$, explain the influence of partial pivoting on the numerical stability of the $P A=L U$ factorization.

Question 2. Let

$$
A=\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2
\end{array}\right)=\binom{1}{2}\left(\begin{array}{lll}
1 & 0 & -1
\end{array}\right)
$$

a. Compute the singular value decomposition of A.
b. Compute the generalized inverse A^{\dagger} of A.

Question 3. Let $A=D-L-L^{t}$, where A is $n \times n$ symmetric, positive definite, D is diagonal, and L is strictly lower triangular.
a. Define the Jacobi, Gauss-Seidel, SOR, and SSOR iterative methods for solving $A x=b$.
b. Assuming A has $O(n)$ nonzero entries, derive the complexity estimate $O(n \log \epsilon / \log \rho)$ to solve $A x=b, x_{0}=0$ with relative error $\left\|x-x_{k}\right\| \leq \epsilon\|x\|$ using the Jacobi iteration. Be sure to define the parameter ρ appearing in this estimate.

Question 4. Let $f(x)$ be a vector function of a vector variable x. Assume $f(x)$ is continuous and differentiable, and that the Jacobian $J(x)$ is continuous in the ball $\mathcal{B}=\left\{x \mid\left\|x-x^{*}\right\| \leq \delta\right.$ for some $\delta>0$. More specifically, assume:

1. $f\left(x^{*}\right)=0$.
2. $\left\|J(x)^{-1}\right\| \leq M$ for all $x \in \mathcal{B}$.
3. $\|J(x)-J(y)\| \leq \gamma\|x-y\|$ for all $x, y \in \mathcal{B}$.

Assume the sequence x_{k} is generated from a starting vector $x_{0} \in \mathcal{B}$ using Newton's method without line search. Using Taylor's theorem, prove

$$
\left\|e_{k+1}\right\| \leq \frac{M \gamma}{2}\left\|e_{k}\right\|^{2}
$$

where $e_{k}=x^{*}-x_{k}$. Hint: $f(x)=f(y)+\int_{0}^{1} J(\theta x+(1-\theta) y)(x-y) d \theta$

Question 5. Consider the inner product (f, g), and corresponding norm $\|f\|=\sqrt{(f, f)}$ defined on a vector space \mathcal{V}. Let $\mathcal{S} \subset \mathcal{V}$ be a finite dimensional subspace. Let $f \in \mathcal{V}$, and let $f^{*} \in \mathcal{S}$ be the least squares approximation of f satisfying

$$
\left\|f-f^{*}\right\|=\min _{v \in \mathcal{S}}\|f-v\|
$$

Prove the orthogonality relation

$$
\left(f-f^{*}, v\right)=0
$$

for all $v \in \mathcal{S}$.

Question 6. Let

$$
\mathcal{I}(f)=\int_{-1}^{1} f(x) d x
$$

We consider a Gaussian quadrature formula of the form

$$
\mathcal{Q}(f)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f\left(x_{3}\right)
$$

a. Compute the weights w_{i} and knots x_{i} to maximize the order. (Hint: use symmetry.)
b. Using the Peano Kernel Theorem, prove

$$
|\mathcal{I}(f)-\mathcal{Q}(f)| \leq C_{0}\left\|f^{v i}\right\|_{\infty[-1,1]}
$$

Question 7. Consider the scalar equation $y^{\prime}=f(y)$ with $y\left(x_{0}\right)=y_{0}$.
a. Define Euler's Method, the Backward Difference Method, and the Trapezoid Rule (Crank-Nicolson Method) for solving this equation.
b. Compute the region of absolute stability for each of these methods.
c. Which of these methods are A-Stable? Which are L-Stable?

Question 8. Consider the multistep formula

$$
\sum_{i=0}^{p} \alpha_{i} y_{n-i}+h \beta_{i} f\left(y_{n-i}\right)=0
$$

for approximating $y^{\prime}=f(y)$.
a. Define the local truncation error for this formula.
b. Define the polynomials $\rho(r)$ and $\sigma(r)$ associated with this formula.
c. Define consistency conditions for the formula in terms of ρ and σ.
d. Define the root condition for stability in terms of ρ and σ.

