Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiner: Michael Holst

9am-12pm
Wednesday September 13, 2017

Name

$\# 1.1$	25	
$\# 1.2$	25	
$\# 1.3$	25	
$\# 2.1$	25	
$\# 2.2$	25	
$\# 2.3$	25	
$\# 3.1$	25	
$\# 3.2$	25	
Total	200	

- Put your name in the box provided and staple exam to your solutions.
- Write your name clearly on every sheet of paper you submit.

1 Numerical Linear Algebra (270A)

Question 1.1. Let $A \in \mathbb{R}^{n \times n}$, and let $\|\cdot\|_{p}$ denote the standard l^{p} norms on $\mathbb{R}^{n}, 1 \leq p \leq \infty$. We know that the following norm equivalence relations for the l^{p}-norms on \mathbb{R}^{n} can be shown to hold:

$$
\|u\|_{\infty} \leq\|u\|_{2} \leq\|u\|_{1} \leq \sqrt{n}\|u\|_{2} \leq n\|u\|_{\infty}, \quad \forall u \in \mathbb{R}^{n}
$$

(a) Show the following induced matrix norm and spectral radius relationships:

$$
\|A\|_{1} \leq \sqrt{n}\|A\|_{2} \leq n\|A\|_{1}, \quad\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2} \leq n\|A\|_{\infty}, \quad \rho(A) \leq\|A\|_{p}
$$

(b) Give a precise mathematical definition of a well-posed problem, and a precise mathematical definition of the condition of a problem.
(c) Assume A is invertible, and $A x=b$ and $A(x+\delta x)=(b+\delta b)$ for some $x, b, \delta x, \delta b \in \mathbb{R}^{n}$. Show

$$
\frac{\|\delta x\|_{p}}{\|x\|_{p}} \leq \kappa_{p}(A) \frac{\|\delta b\|_{p}}{\|b\|_{p}}, \quad \frac{\|\delta b\|_{p}}{\|b\|_{p}} \leq \kappa_{p}(A) \frac{\|\delta x\|_{p}}{\|x\|_{p}}, \quad 1 \leq p \leq \infty .
$$

Question 1.2. Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and consider the overdetermined system:

$$
A x=b, \quad \text { where } x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}
$$

(a) Formulate the minimization problem that defines the least-squares solution, and rigorously derive the normal equations from this problem.
(b) Assume A has full rank. Identify the projector P arising in least-squares, show it is idempotent, and show how to exploit a QR factorization of A in an algorithm for finding the least-squares solution.
(c) If $P \in \mathbb{R}^{m \times m}$ is nonzero and idempotent, show that $\|P\|_{2} \geq 1$, and that equality holds when P self-adjoint.

Question 1.3. Let $A, B \in \mathbb{R}^{n \times n}$ be SPD matrices.
(a) Show that A defines an inner-product and norm

$$
(u, v)_{A}=(A u, v)_{2}, \quad\|u\|_{A}=(u, u)_{A}^{1 / 2}
$$

where $(u, v)_{2}$ is the usual Euclidean 2-inner-product. Now show that $B A$ and $E=I-B A$ are A-self-adjoint, that they have real eigenvalues, and further that $B A$ is A-positive.
(b) Derive the basic linear method (BLM) for solving $A u=f$, starting with any $u^{0} \in \mathbb{R}^{n}$:

$$
u^{k+1}=(I-B A) u^{k}+B f, \quad k=0,1,2, \ldots
$$

(c) Prove the basic convergence theorem for the BLM: If A and B are $S P D$, then

$$
\rho(I-\alpha B A)=\|I-\alpha B A\|_{A}<1
$$

if and only if $\alpha \in(0,2 / \rho(B A))$. Moreover, convergence is optimal when $\alpha=2 /\left[\lambda_{\min }(B A)+\right.$ $\left.\lambda_{\max }(B A)\right]$, giving

$$
\rho(I-\alpha B A)=\|I-\alpha B A\|_{A}=1-\frac{2}{1+\kappa_{A}(B A)}
$$

2 Numerical Approximation and Nonlinear Equations (270B)

Question 2.1. Let $F: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable on an open convex set D.
(a) Rigorously derive the following expansion with integral remainder:

$$
F(x+h)=F(x)+F^{\prime}(x) h+\int_{0}^{1}\left\{F^{\prime}(x+\xi h)-F^{\prime}(x)\right\} h d \xi,
$$

and then use this expansion to derive Newton's method for $F(x)=0$.
(b) Give a complete algorithm (in pseudocode only) for implementing Newton's method for the solving problem: $F(x)=0$. Include backtracking line-search (i.e., damping) and allow for inexact solves of the linearized systems at each step.
(c) Assume that $F\left(x^{*}\right)=0$ for some $x^{*} \in D$, and that $F^{\prime}\left(x^{*}\right)$ is nonsingular. Prove the basic convergence theorem for Newton's method: There exists an open neighborhood $S \subset D$ containing x^{*} such that, for any $x_{0} \in S$, the Newton iterates are well-defined, remain in S, and converge to x^{*} at q-superlinear rate.

Question 2.2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, 0<m<n$, and consider the problem:

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x), \\
\text { subject to } c(x)=0
\end{gathered}
$$

(a) Give the first-order necessary condition for constrained optimality, and clearly specify nonlinear system of equations that must be solved to find a point satisfying the first order necessary condition.
(b) Derive the jacobian matrix of the nonlinear system of equations from part (a), and use this jacobian to write down a complete Newton's method algorithm for solving the nonlinear system you specified in part (a).
(c) Give the second-order necessary and sufficient condition for constrained optimality.

Question 2.3. Consider the following tabulated data for a function $f: \mathbb{R} \rightarrow \mathbb{R}$:

x	$f(x)$
0	1
1	3
2	13

(a) Construct the (unique) quadratic interpolation polynomial $p_{2}(x)$ which interpolates the data.
(b) If the function $f(x)$ that generated the above data was actually the cubic polynomial $P_{3}(x)=$ $x^{3}+x^{2}+1$, derive an error bound for the interval $[0,2]$.
(c) Use the composite trapezoid rule with two intervals to construct an approximation to:

$$
\int_{0}^{2} f(x) d x
$$

and give an expression for the error.

3 Numerical Ordinary Differential Equations (270C)

Question 3.1. We turn to best and near-best approximation in Banach and Hilbert spaces.
(a) Consider first the problem of best L^{p}-approximation of a function $u(x)=x^{2}-2 x^{3}$ over the interval $[0,1]$ from a subspace $V \subset L^{p}([0,1])$. Determine the best L^{2}-approximation in the subspace of linear functions; i.e., $V=\operatorname{span}\{1, x\}$. Give an outline of an algorithm that could find the best L^{p} approximation when $p \neq 2$.
(b) Let X be a general Hilbert space, and let $U \subset X$ be a subspace. Prove that the orthogonal projection of u onto $Q u \in U$ is the unique best approximation of u in U, i.e., that $Q u$ uniquely satisfies

$$
\|u-Q u\|_{X}=\inf _{w \in U}\|u-w\|_{X} .
$$

Rather than the orthogonal projection from part (b), consider now the "Galerkin projection" of u onto $\bar{u}=P u \in U$ as defined by the problem:

$$
\text { Find } \bar{u} \in U \subset X \text { such that } A(\bar{u}, \bar{v})=F(\bar{v}), \quad \forall \bar{v} \in U \subset X,
$$

where $A(u, v)$ is a bounded and coercive bilinear form on the Hilbert space X, and $F(v)$ is an element of the dual space X^{*} to X.
(c) Prove that \bar{u} exists and is unique, and that Cea's Lemma holds for \bar{u} :

$$
\|u-\bar{u}\|_{X} \leq C \inf _{w \in U}\|u-w\|_{X} .
$$

(I.e., this shows that \bar{u} is a "quasi-best" approximation to u.)

Question 3.2. Consider the following initial value problem (IVP):

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\alpha . \tag{3.1}
\end{equation*}
$$

(a) Assume for this part only that $f(t, y)=t^{3} y-2, a=0, b=1, \alpha=1$. Now, rigorously prove that this problem is well-posed.

Consider now the following class of one-step methods $(\theta \in[0,1])$ for (3.1):

$$
\begin{aligned}
w_{0} & =\alpha \\
w_{i+1} & =w_{i}+h\left[\theta f\left(t_{i}, w_{i}\right)+(1-\theta) f\left(t_{i+1}, w_{i+1}\right)\right]
\end{aligned}
$$

(b) Determine truncation error for this class of methods.
(c) For problem (3.1), what ranges of θ make the method consistent, stable, unstable, and/or conditionally stable? What are the region of stability for the cases $\theta=0$ and $\theta=1$?

