Numerical Analysis Qualifying Exam June 5, 2000
Print Name
Signature \qquad

\# A1	20	
\# A2	30	
\# A3	20	
\# B1	20	
\# B2	20	
\# B3	20	
\# B4	20	
Subtotal	150	
\#C	50	
Total	200	

A1. (a) Prove $\|x\|_{\infty} \leq\|x\|_{p} \leq n^{\frac{1}{p}}\|x\|_{\infty}$ for all $x \in \mathbb{R}^{n}, 1 \leq p \leq \infty$.
(b) Let $A \in \mathbb{R}^{m \times n}$. Prove:

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}, \\
& \frac{1}{\sqrt{m}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1}, \\
& \|A\|_{2} \leq \sqrt{\|A\|_{1}\|A\|_{\infty}} .
\end{aligned}
$$

A2. Let the computed L and U satisfy $A+E=L U$, where L is unit lower triangular and U is upper triangular. Derive the bound on $E:\left|E_{i j}\right| \leq(3+u) u \max (i-1, j) g$, where u is unit roundoff and $g=\max _{i, j, k}\left|a_{i j}^{(k)}\right|$.

A3. Prove that if A is symmetric positive definite, $\max _{i, j}\left|a_{i j}\right|=1$, then $\max _{i, j, k}\left|a_{i j}^{(k)}\right|=1$ under $L U$ (or $L D L^{T}$) decomposition.

B1. Let $A \in \mathbb{C}^{n \times n}$. Prove that A has n orthonormal eigenvectors iff $A^{H} A=A A^{H}$.
B2. Let $A \in \mathbb{R}^{m \times n}, m \geq n$. Derive the \min 2-norm least squares solution to $r=A x-b$ in terms of the SVD of A.

B3. Let $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=n, A^{T} A x=A^{T} b,\left(A^{T} A+F\right) y=A^{T} b,\|F\|_{2} \leq \frac{1}{2} \sigma_{n}(A)^{2}$, $r=b-A x, s=b-A y$. Show $s-r=A\left(A^{T} A+F\right)^{-1} F x$ and $\|s-r\|_{2} \leq 2 \kappa_{2}(A) \frac{\|F\|_{2}}{\|A\|_{2}}\|x\|_{2}$.

B4. Let $\tilde{A}\left[\begin{array}{c}y \\ z\end{array}\right]=\lambda \widetilde{B}\left[\begin{array}{l}y \\ z\end{array}\right]$, where $\tilde{A}=\left[\begin{array}{ll}0 & A \\ A^{T} & 0\end{array}\right], \widetilde{B}=\left[\begin{array}{ll}B_{1} & 0 \\ 0 & B_{2}\end{array}\right], A \in \mathbb{R}^{m \times n}$, $B_{1} \in \mathbb{R}^{m \times m}, B_{2} \in \mathbb{R}^{n \times n}, y \in \mathbb{R}^{m}, z \in \mathbb{R}^{n}, m \geq n$. Let B_{1}, B_{2} be symmetric positive definite with Cholesky factors G_{1}, G_{2}. Relate the generalized eigenvalues of $(\underset{\tilde{A}}{ }, \widetilde{B})$ to the singular values of $M=G_{1}^{-1} A G_{2}^{-T}$.

June 5, 2000

Name
Signature

$\# 1$	25	
$\# 2$	25	
Total	50	

Question 1. Let $f \in \mathcal{C}^{4}(I), I=[a, b]$, and let $x_{i}=a+i h, 0 \leq i \leq n, h=$ $(b-a) / n$ be a uniform mesh on I. Let \mathcal{S} be the space of \mathcal{C}^{1} piecewise cubic hermite polynomials with respect to this uniform mesh and let \tilde{f} denote the interpolant of f.
a. Compute the dimension of \mathcal{S} and define the standard nodal basis functions for \mathcal{S}.
b. Using the Peano Kernel Theorem, prove:

$$
\|f-\tilde{f}\|_{\mathcal{L}^{2}(I)} \leq C h^{4}\left\|f^{(i v)}\right\|_{\mathcal{L}^{4}(I)}
$$

(You do NOT need to explicitly evaluate the constant C.)
Question 2. Let

$$
\mathcal{I}(f)=\int_{-1}^{1} f(x) d x
$$

and let

$$
\mathcal{Q}(f)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

denote the n-point Gauss-Legendre quadrature formula (of order $2 n$). As usual denote by $\phi_{i}(x)$ the Lagrange nodal basis functions satisfying

$$
\phi_{i}\left(x_{j}\right)=\delta_{i j}
$$

a. Prove $w_{i}=\mathcal{I}\left(\phi_{i}\right)$.
b. Prove that the nodes $\left\{x_{i}\right\}$ are the zeroes of the Legendre polynomial of degree n. Hint: let $P(x)$ be a polynomial of degree $2 n-1$ and $\tilde{P}(x)=\sum_{\tilde{P}} P\left(x_{i}\right) \phi_{i}(x)$ its Lagrange interpolant of degree n. First prove that $\mathcal{Q}(P)=\mathcal{I}(\tilde{P})$, and then consider the implications of $\mathcal{I}(P)=\mathcal{I}(\tilde{P})$ for all polynomials of degree $2 n-1$.

