Numerical Analysis Qualifying Examination

May 31, 2002

	#1	15	
NAME	#2	15	
	#3	10	
	Total	40	

Question 1. Let $f^* \in S$ be the continuous piecewise linear interpolant for f on a mesh of n+1 knots $x_0 < x_1 < \ldots < x_n$. Let $h = \max_i(x_i - x_{i-1})$ and assume $f \in \mathcal{C}^2(x_0, x_n)$. Prove

$$\parallel f - f^* \parallel_{\infty} \leq \frac{h^2}{8} \parallel f'' \parallel_{\infty}$$

Question 2. Let

$$\mathcal{I}(f) = \int_{-1}^{1} f(x) dx$$

Consider the two point Gauss-Legendre quadrature formula of the form

$$Q(f) = w_1 f(x_1) + w_2 f(x_2)$$
(1)

- **a.** Find the knots x_1 and x_2 and the weights w_1 and w_2 for the Gauss-Legendre formula (1).
- **b.** Derive an error estimate for $\mathcal{E}(f) = |\mathcal{I}(f) \mathcal{Q}(f)|$. Be sure to explicitly evaluate the constant.

Question 3. Prove Gronwall's Lemma: Let

$$y' \le \kappa y + \tau$$

for $0 \le t \le T$, and $\tau, \kappa, y \ge 0, \tau$ and κ constant. Then

$$\max_{0 \le t \le T} y(t) \le e^{\kappa T} y(0) + \frac{\tau}{\kappa} \left(e^{\kappa T} - 1 \right).$$

Numerical Analysis Qualifying Exam May 31, 2002 Print Name

Signature _____

#1	15	
# 2	15	
# 3	15	
# 4	20	
# 5	20	
# 6	25	
Part AB	110	
Part C	40	
Total	150	

- (15) 1. State and prove the SVD Existence Theorem (for real $m \times n$ matrices).
- (15) 2. Let A be $m \times n$, rank(A) = r. Use the SVD to prove:
 - (a) $||A||_2 \le ||A||_F \le \sqrt{r} ||A||_2$
 - (b) $\operatorname{rank}(A) = \operatorname{rank}(A^T A) = \operatorname{rank}(AA^T)$
 - (c) $\sigma_n(A)^2 x^T x \leq x^T (A^T A) x \leq \sigma_1(A)^2 x^T x$ for all $x \in \mathbb{R}^n, m \geq n$.

(15) 3. (a) Let D be an $m \times n$ diagonal matrix. Prove $||D||_p = \max_i |d_{ii}|$ for $1 \le p \le \infty$.

- (b) Prove that if A is $m \times n$, rank(A) = n and $||E||_p ||A^+||_p < 1$ for some $p, 1 \le p \le \infty$, then rank(A + E) = n.
- (c) Let A be $n \times n$, nonsingular, and A = QR, where Q is orthogonal and R is upper triangular with positive diagonal. Prove that Q and R are unique.
- (20) 4. Let the computed L and U satisfy A + E = LU, where L is unit lower triangular and U is upper triangular. Derive the bound on E:

 $|E_{ij}| \le (3+u)u \max(i-1,j)g,$

where $g = \max_{k} \max_{i,j} |a_{ij}^{(k)}|$ and u = machine precision.

- (20) 5. (a) Prove that \hat{x} is a least squares solution for r(x) = Ax b, where A is $m \times n, m \ge n$, iff \hat{x} satisfies the normal equations.
 - (b) Let Ax = b, where A is $m \times n, m < n, \operatorname{rank}(A) = r = \operatorname{rank}[A|b]$. Derive the min 2-norm solution to Ax = b in terms of the SVD of A.
- (5) 6. (a) Show $A, n \times n$, has n linearly independent eigenvectors iff A is diagonalizable.
- (10) (b) Let $r = Ax \lambda x$, $||x||_2 = 1$. Find E such that $(A + E)x = \lambda x$ and $||E||_2 = ||r||_2$, where A, E are $n \times n$, complex.
- (10) (c) Show when and how the generalized symmetric eigenproblem, $Ax = \lambda Bx, x \neq 0, A = A^T, B = B^T$, can be reduced to a standard symmetric eigenproblem, $My = \mu y, y \neq 0, M = M^T$.