Numerical Analysis Qualifying Examination

May 31, 2002

Name
Signature

$\# 1$	15	
$\# 2$	15	
$\# 3$	10	
Total	40	

Question 1. Let $f^{*} \in \mathcal{S}$ be the continuous piecewise linear interpolant for f on a mesh of $n+1$ knots $x_{0}<x_{1}<\ldots<x_{n}$. Let $h=\max _{i}\left(x_{i}-x_{i-1}\right)$ and assume $f \in \mathcal{C}^{2}\left(x_{0}, x_{n}\right)$. Prove

$$
\left\|f-f^{*}\right\|_{\infty} \leq \frac{h^{2}}{8}\left\|f^{\prime \prime}\right\|_{\infty}
$$

Question 2. Let

$$
\mathcal{I}(f)=\int_{-1}^{1} f(x) d x
$$

Consider the two point Gauss-Legendre quadrature formula of the form

$$
\begin{equation*}
\mathcal{Q}(f)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right) \tag{1}
\end{equation*}
$$

a. Find the knots x_{1} and x_{2} and the weights w_{1} and w_{2} for the Gauss-Legendre formula (1).
b. Derive an error estimate for $\mathcal{E}(f)=|\mathcal{I}(f)-\mathcal{Q}(f)|$. Be sure to explicitly evaluate the constant.

Question 3. Prove Gronwall's Lemma: Let

$$
y^{\prime} \leq \kappa y+\tau
$$

for $0 \leq t \leq T$, and $\tau, \kappa, y \geq 0, \tau$ and κ constant. Then

$$
\max _{0 \leq t \leq T} y(t) \leq e^{\kappa T} y(0)+\frac{\tau}{\kappa}\left(e^{\kappa T}-1\right)
$$

Numerical Analysis Qualifying Exam May 31, 2002
Print Name \qquad
Signature \qquad

$\# 1$	15	
$\# 2$	15	
$\# 3$	15	
$\# 4$	20	
$\# 5$	20	
$\# 6$	25	
Part AB	110	
Part C	40	
Total	150	

(15) 1. State and prove the SVD Existence Theorem (for real $m \times n$ matrices).
(15) 2. Let A be $m \times n, \operatorname{rank}(A)=r$. Use the SVD to prove:
(a) $\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{r}\|A\|_{2}$
(b) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A A^{T}\right)$
(c) $\sigma_{n}(A)^{2} x^{T} x \leq x^{T}\left(A^{T} A\right) x \leq \sigma_{1}(A)^{2} x^{T} x$ for all $x \in \mathbb{R}^{n}, m \geq n$.
3. (a) Let D be an $m \times n$ diagonal matrix. Prove $\|D\|_{p}=\max _{i}\left|d_{i i}\right|$ for $1 \leq p \leq \infty$.
(b) Prove that if A is $m \times n, \operatorname{rank}(A)=n$ and $\|E\|_{p}\left\|A^{+}\right\|_{p}<1$ for some $p, 1 \leq p \leq \infty$, then $\operatorname{rank}(A+E)=n$.
(c) Let A be $n \times n$, nonsingular, and $A=Q R$, where Q is orthogonal and R is upper triangular with positive diagonal. Prove that Q and R are unique.
(20) 4. Let the computed L and U satisfy $A+E=L U$, where L is unit lower triangular and U is upper triangular. Derive the bound on E :

$$
\left|E_{i j}\right| \leq(3+u) u \max (i-1, j) g,
$$

where $g=\max _{k} \max _{i, j}\left|a_{i j}^{(k)}\right|$ and $u=$ machine precision.
(20) 5. (a) Prove that \hat{x} is a least squares solution for $r(x)=A x-b$, where A is $m \times n, m \geq n$, iff \hat{x} satisfies the normal equations.
(b) Let $A x=b$, where A is $m \times n, m<n, \operatorname{rank}(A)=r=\operatorname{rank}[A \mid b]$. Derive the \min 2-norm solution to $A x=b$ in terms of the SVD of A.
(5) 6. (a) Show $A, n \times n$, has n linearly independent eigenvectors iff A is diagonalizable.
(b) Let $r=A x-\lambda x,\|x\|_{2}=1$. Find E such that $(A+E) x=\lambda x$ and $\|E\|_{2}=\|r\|_{2}$, where A, E are $n \times n$, complex.
(c) Show when and how the generalized symmetric eigenproblem, $A x=\lambda B x, x \neq$ $0, A=A^{T}, B=B^{T}$, can be reduced to a standard symmetric eigenproblem, $M y=\mu y, y \neq 0, M=M^{T}$.

