Numerical Analysis Qualifying Examination

June 2, 2006

		#1	20	
Name Signature		#2	20	
		#3	20	
		Total	60	

Question 1. In this problem we will analyze the case of continuous piecewise quadratic interpolation on a mesh of n + 1 knots $x_0 < x_1 < \ldots < x_n$. We will also need the interval midpoints $x_{i+1/2} = (x_i + x_{i+1})/2$. The dimension of the space is N = 2n + 1.

- a. Define the nodal basis functions. Note there are two types: hat functions and bump functions.
- **b.** Let f^* be the continuous piecewise quadratic interpolant for f. Using the Peano Kernel Theorem, prove

$$\parallel f - f^* \parallel_{\infty} \le Ch^3 \parallel f''' \parallel_{\infty}$$

Question 2. Let Let y' = f(y), $y(0) = y_0$. Euler's method for solving this ordinary differential equation is given by

$$y_{k+1} = y_k + h f(y_k)$$

for k = 0, 1, ... and $t_k = kh$. Let $T_f = nh$ denote the final time.

- **a.** Compute the *local truncation error* for Euler's method.
- **b.** Compute the region of absolute stability for Euler's method.
- c. Using (discrete) Gronwall's Lemma, prove

$$\max_{0 \le k \le n} |y(t_k) - y_k| \le Ch \max_{0 \le t \le T_f} |y''|$$

Question 3. The Euler-Maclaurin summation formula is

$$\int_{a}^{b} f(x) \, dx = T(h) + \sum_{k=1}^{r} C_{k} h^{2k} \{ f^{(2k-1)}(b) - f^{(2k-1)}(a) \} + O(h^{2r+2})$$

where h = (b - a)/n, $x_k = a + kh$, C_k is a constant independent of f and h, $f \in C^{2r-1}[a, b]$, and

$$T(h) = \frac{h}{2} \sum_{k=1}^{n} f(x_{k-1}) + f(x_k)$$

is the composite trapezoid rule. Using this information derive a Richardson Extrapolation scheme for computing a high order approximation of $\int_a^b f(x) dx$. Be sure to define all terms carefully and explicitly state the order of each intermediate approximation.

Numerical Analysis Qualifying Exam Parts B and C June 2, 2006 Name

#1	20	
#2	20	
#3	20	
#4	20	
#5	20	
B-C	100	
А	60	
Total	160	

- (20) 1. State and prove the SVD Existence Theorem (for real $m \times n$ matrices).
- (20) 2. Let the computed L and U satisfy A + E = LU, where L is unit lower triangular and U is upper triangular. Derive the bound on $E : |E_{ij}| \le (3+u)u \max(i-1,j)g$, $g = \max_k \max_{i,j} |a_{ij}^{(k)}|$.
- (20) 3. Prove that \hat{x} is a least squares solution to r = Ax b, where A is $m \times n$ and $m \ge n$, iff \hat{x} satisfies the normal equations.
- (20) 4. (a) Prove that if A is positive definite then its eigenvalues are positive.
 - (b) Prove that if A is normal and its eigenvalues are positive then A is positive definite.
 - (c) Prove that A is similar to a diagonal matrix iff A has n linearly independent eigenvectors, where A is $n \times n$.
 - (d) Prove that if A is real, then λ is a real eigenvalue of A iff it has a real corresponding eigenvector.
- (20) 5. (a) State the Schur Decomposition Theorem.
 - (b) Use it to prove: if A is $n \times n$ then A has n orthonormal eigenvectors iff $A^{H}A = AA^{H}$.
 - (c) Show that if the single shift QR method converges, then the convergence is quadratic for general matrices.

Contraction of the second