June 2, 2006

Name
Signature

$\# 1$	20	
$\# 2$	20	
$\# 3$	20	
Total	60	

Question 1. In this problem we will analyze the case of continuous piecewise quadratic interpolation on a mesh of $n+1$ knots $x_{0}<x_{1}<\ldots<x_{n}$. We will also need the interval midpoints $x_{i+1 / 2}=\left(x_{i}+x_{i+1}\right) / 2$. The dimension of the space is $N=2 n+1$.
a. Define the nodal basis functions. Note there are two types: hat functions and bump functions.
b. Let f^{*} be the continuous piecewise quadratic interpolant for f. Using the Peano Kernel Theorem. prove

$$
\left\|f-f^{*}\right\|_{\infty} \leq C h^{3}\left\|f^{\prime \prime \prime}\right\|_{\infty}
$$

Question 2. Let Let $y^{\prime}=f(y), y(0)=y_{0}$. Euler's method for solving this ordinary differential equation is given by

$$
y_{k+1}=y_{k}+h f\left(y_{k}\right)
$$

for $k=0,1, \ldots$ and $t_{k}=k h$. Let $T_{f}=n h$ denote the final time.
a. Compute the local truncation error for Euler's method.
b. Compute the region of absolute stability for Euler's method.
c. Using (discrete) Gronwall's Lemma, prove

$$
\max _{0 \leq k \leq n}\left|y\left(t_{k}\right)-y_{k}\right| \leq C h \max _{0 \leq t \leq T_{f}}\left|y^{\prime \prime}\right|
$$

Question 3. The Euler-Maclaurin summation formula is

$$
\int_{a}^{b} f(x) d x=T(h)+\sum_{k=1}^{r} C_{k} h^{2 k}\left\{f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right\}+O\left(h^{2 r+2}\right)
$$

where $h=(b-a) / n, x_{k}=a+k h, C_{k}$ is a constant independent of f and $h, f \in \mathcal{C}^{2 r-1}[a, b]$, and

$$
T(h)=\frac{h}{2} \sum_{k=1}^{n} f\left(x_{k-1}\right)+f\left(x_{k}\right)
$$

is the composite trapezoid rule. Using this information derive a Richardson Extrapolation scheme for computing a high order approximation of $\int_{a}^{b} f(x) d x$. Be sure to define all terms carefully and explicitly state the order of each intermediate approximation.

Numerical Analysis Qualifying Exam
Parts B and C
June 2, 2006
Name \qquad

$\# 1$	20	
$\# \# 2$	20	
$\# \#$	20	
$\# 4$	20	
$\# 5$	20	
B-C	100	
A	60	
Total	160	

(20) 1. State and prove the $S V D$ Existence Theorem (for real $m \times n$ matrices).
(20) 2. Let the computed L and U satisfy $A+E=L U$, where L is unit lower triangular and U is upper triangular. Derive the bound on $E:\left|E_{i j}\right| \leq(3+u) u \max (i-1, j) g$, $g=\max _{k} \max _{i, j}\left|a_{i j}^{(k)}\right|$.
3. Prove that \hat{x} is a least squares solution to $r=A x-b$, where A is $m \times n$ and $m \geq n$, iff \hat{x} satisfies the normal equations.
(20) 4. (a) Prove that if A is positive definite then its eigenvalues are positive.
(b) Prove that if A is normal and its eigenvalues are positive then A is positive definite.
(c) Prove that A is similar to a diagonal matrix iff A has n linearly independent eigenvectors, where A is $n \times n$.
(d) Prove that if A is real, then λ is a real eigenvalue of A iff it has a real corresponding eigenvector.
(20) 5. (a) State the Schur Decomposition Theorem.
(b) Use it to prove: if A is $n \times n$ then A has n orthonormal eigenvectors iff $A^{H} A=A A^{H}$.
(c) Show that if the single shift $Q R$ method converges, then the convergence is quadratic for general matrices.

