Instructions: Answer all six problems. No books or notes may be used in this exam. You may cite without proof any result in the text by Folland, in any problem.

1. (45 pts.) Prove the following. Each follows in a suraightforward way by applying theorems. Be sure to name each theorem winen you use it.
(a) (15 pts.) Let $\left\{f_{j}\right\}$ be a sequence of real-valued functions in $L^{1}(\mu)$ such tinat $f_{1} \geq f_{2} \geq$ $\ldots \geq 0$. Then

$$
\lim \int f_{j} d \mu=\int \lim f_{j} d \mu
$$

(b) Let $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ be continuous. Then for all $\epsilon>0$ there exists $N>0$ and continuous functions $g_{j}, h_{j}:[a, b] \rightarrow \mathbb{R}$ such that

$$
\left|f(x, y)-\sum_{j} g_{j}(x) h_{j}(y)\right|<\epsilon \forall(x, y) \in[a, b] \times[c, d]
$$

(c) Let $C([0,1], \mathbb{R})$ be the space of all real valued functions on $[0,1]$ with the uniform norm topology. Suppose that

$$
C([0,1], \mathbb{R})=\bigcup_{j} F_{j}
$$

where each F_{j} is closed. Then there exists $\in>0, j_{0} \in \mathbb{N}$, and $f_{0} \in F_{j 0}$ such that

$$
\sup _{x \in[0,1]}\left|f(x)-f_{0}(x)\right|<\epsilon \Longrightarrow f \in F_{j_{0}}
$$

2. (15 pts.) Find Lebesgue measurable sets $A, B \subset \mathbb{R}^{2}$ such that $A+B$ is not Lebesgue measurable.
3. (15 pts.) Show that the function $e^{x} \sin \left(e^{x}\right)$ defines a tempered distribution on \mathbb{R}. (This is, show that the distribution it defines extends to a tempered distribution. OK to be brief here.)
4. (20 pts.) Prove that ℓ^{∞} (the space of all bounded sequences of complex numbers with the sup norm) is not separable. (Hint: Try proof by contradiction.)
5. (25 pts.) Let \mathcal{H} be a Hilbert space. Suppose that there is a sequence $\left\{x_{j}\right\}$ in \mathcal{H} such that the finite linear combinations of the x_{j} are dense in \mathcal{H} and

$$
\left|<x_{j}, x_{k}>\right| \leq 1 / 2^{|j-k|} \quad \forall j, k \in \mathbb{N} .
$$

Prove that $x_{j} \rightarrow 0$ weakly:
6. (30 pts.) Let ($X, \mathcal{M}, \mu)$ be a finite measure space, and $0 \leq f_{1} \leq f_{2} \leq \ldots \leq f$ be nonnegative measurable functions on X with $\lim f_{j}(x)=f(x)$ for aimost every $x \in X$.
(a) Prove that $\mu\left(f_{j}^{-1}(r, \infty]\right)-\mu\left(f^{-1}(r, \infty)\right)$ as $j \rightarrow \infty$ for every $r \geq 0, r \in \mathbb{R}$.
(b) Prove that $\int_{X} f d \mu=\int_{0}^{\infty} \mu\left(f^{-1}(r, \infty)\right) d r$.
(Hint: You could use (a), taking f_{j} to be a sequence of simple functions that converge monotonically to f.)

