Mathematical Statistics (281ABC) Qualifying Exam, September 7, 2010

Problem 1 Let $X_1, ..., X_n$ be i.i.d. with density function

$$f(x; \theta) = \theta x^{\theta - 1}, \ 0 < x < 1, \theta > 0.$$

This is a sub-family of the Beta distribution. Let $T = -\sum_{i=1}^{n} \log(X_i)/n$.

- (a) Verify that this is an exponential family, write down the natural parameter and the sufficient statistic; (5 points)
- (b) Use properties of the exponential family to show that $E(T) = 1/\theta$ and $Var(T) = 1/n\theta^2$; (10 points)
- (c) Compute the Fisher information for this problem; (10 points)
- (d) Deduce that T achieves the information inequality lower bound, and therefore is UMVU for $1/\theta$. (5 points)

Problem 2 Let $X_1, ..., X_n$ be i.i.d. with density function

$$f(x;\theta) = \theta x^{\theta-1} \exp(-x^{\theta}), \ x > 0, \theta > 0.$$

This is a sub-family of the Weibull distribution.

- (a) Explain if it belongs to the location, scale, or exponential family. (5 points)
- (b) Show that there is a unique interior maximum of the likelihood function. (5 points)
- (c) Find the maximum likelihood estimate $\hat{\theta}$ given the data. (5 points)
- (d) Estimate the variance of θ . (5 points)

Problem 3 Suppose X_1, \ldots, X_n is an i.i.d. sample from from $\mathcal{N}(0, \sigma^2)$. We are interested in testing $H : \sigma \leq \sigma_0$ versus $K : \sigma > \sigma_0$.

- (a) Fix $\sigma_1 > \sigma_0$. Write down the likelihood ratio for H versus $K_1 : \sigma = \sigma_1$ and deduce that the test that rejects for large values of $\sum_i (X_i \xi_0)^2$ is most powerful. (10 points)
- (b) Give an explicit form for a UMP test for H versus K at level $\alpha \in (0, 1)$. (10 points)
- (c) Is this the only UMP test? (5 points)

Problem 4 Suppose X_1, \ldots, X_s are independent with X_i having the Poisson distribution with mean λ_i . Consider testing $H : \sum_i \lambda_i \leq a$ versus $K : \sum_i \lambda_i > a$, where a > 0 is fixed.

(a) Fix an alternative $(\lambda'_1, \ldots, \lambda'_s)$ with $\sum_i \lambda'_i > a$. Write down the likelihood ratio. (5 points)

- (b) For a given alternative $(\lambda'_1, \ldots, \lambda'_s)$, consider the prior on $(\lambda_1, \ldots, \lambda_s)$ where $\lambda_i = a\lambda'_i / \sum_j \lambda'_j$. Give a most power test for this simple versus simple situation. (5 points)
- (c) Show that the power of the test that rejects for large values of $\sum_i X_i$ is monotone in $\sum_i \lambda_i$. (5 points)
- (d) Deduce a UMP test for H versus K. (5 points)

Problem 5 X1, Xn Mild uniform [-1, x+1] (x>1). Do on ARE companison of $\hat{x}_1 = \overline{x}$ and $\hat{x}_2 = med \frac{\pi}{2} \times \frac{\pi}{2}$. Are both limit-low and risk companisons available as a basis for this ARE determination? If so pick either one for your analysis. What size a does an 22 - statistician need to match the performance of an 2, - statistician using n = 1 million observations? Note with commant that neither estimator is optimal. What would happen if you compoured \$23 = \$ MLE and (bonns points) \$24 = e (where Vi= In X:) against 22 in an asymptotic analysis. Though that at least one of these estimations is mainmissible.

.