Mathematical Statistics (281ABC)
 Qualifying Exam, September 7, 2010

Problem 1 Let X_{1}, \ldots, X_{n} be i.i.d. with density function

$$
f(x ; \theta)=\theta x^{\theta-1}, \quad 0<x<1, \theta>0 .
$$

This is a sub-family of the Beta distribution. Let $T=-\sum_{i=1}^{n} \log \left(X_{i}\right) / n$.
(a) Verify that this is an exponential family, write down the natural parameter and the sufficient statistic; (5 points)
(b) Use properties of the exponential family to show that $E(T)=1 / \theta$ and $\operatorname{Var}(T)=$ $1 / n \theta^{2}$; (10 points)
(c) Compute the Fisher information for this problem; (10 points)
(d) Deduce that T achieves the information inequality lower bound, and therefore is UMVU for $1 / \theta$. (5 points)

Problem 2 Let X_{1}, \ldots, X_{n} be i.i.d. with density function

$$
f(x ; \theta)=\theta x^{\theta-1} \exp \left(-x^{\theta}\right), \quad x>0, \theta>0 .
$$

This is a sub-family of the Weibull distribution.
(a) Explain if it belongs to the location, scale, or exponential family. (5 points)
(b) Show that there is a unique interior maximum of the likelihood function. (5 points)
(c) Find the maximum likelihood estimate $\hat{\theta}$ given the data. (5 points)
(d) Estimate the variance of $\hat{\theta}$. (5 points)

Problem 3 Suppose X_{1}, \ldots, X_{n} is an i.i.d. sample from from $\mathcal{N}\left(0, \sigma^{2}\right)$. We are interested in testing $H: \sigma \leq \sigma_{0}$ versus $K: \sigma>\sigma_{0}$.
(a) Fix $\sigma_{1}>\sigma_{0}$. Write down the likelihood ratio for H versus $K_{1}: \sigma=\sigma_{1}$ and deduce that the test that rejects for large values of $\sum_{i}\left(X_{i}-\xi_{0}\right)^{2}$ is most powerful. (10 points)
(b) Give an explicit form for a UMP test for H versus K at level $\alpha \in(0,1)$. (10 points)
(c) Is this the only UMP test? (5 points)

Problem 4 Suppose X_{1}, \ldots, X_{s} are independent with X_{i} having the Poisson distribution with mean λ_{i}. Consider testing $H: \sum_{i} \lambda_{i} \leq a$ versus $K: \sum_{i} \lambda_{i}>a$, where $a>0$ is fixed.
(a) Fix an alternative $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{s}^{\prime}\right)$ with $\sum_{i} \lambda_{i}^{\prime}>a$. Write down the likelihood ratio. (5 points)
(b) For a given alternative $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{s}^{\prime}\right)$, consider the prior on $\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ where $\lambda_{i}=$ $a \lambda_{i}^{\prime} / \sum_{j} \lambda_{j}^{\prime}$. Give a most power test for this simple versus simple situation. (5 points)
(c) Show that the power of the test that rejects for large values of $\sum_{i} X_{i}$ is monotone in $\sum_{i} \lambda_{i}$. (5 points)
(d) Deduce a UMP test for H versus K. (5 points)

Problem $5 \quad x_{1}, \ldots, x_{n}$ Niid inniform $[x-1, x+1](x>1)$.
D_{0} an $A R E$ cermparison of $\hat{x}_{i}=\bar{x}$ and $\hat{x}_{2}=\operatorname{med}\left\{x_{i}\right\}$. Are beth dimit-low and risk componisons availatie as a basis for this ARE determination? If so pick rithen one for your amolysis. What rize n dives an \hat{x}_{2}-stotistician Hees to watch the performance of am $\hat{\alpha}_{1}$-sitatigtition unny $n=1$ million obsewations? Niete with cervinisut that neithen estimator is eptimal. What would ingten of your compred $\hat{\alpha}_{3}=\hat{\alpha}_{\text {MLE }}$ and (bouns pointrs) $\hat{x}_{L_{4}}=\hat{e}$ (ahere $\because=L_{n} x_{0}$) arainst \hat{x}_{2} in an asymptate cuatgse

