QUALIFYING EXAM: MATH 281A

PROFESSOR JELENA BRADIC

Suppose that we observe data in pairs $(x, y) \in \mathbb{R}^{d} \times\{ \pm 1\}$ where the data come from a logistic model with $X \sim P_{0}$ and

$$
p_{y \mid x}(y \mid x)=\frac{1}{1+\exp \left\{-y x^{\top} \theta\right\}}
$$

with log-loss function $l_{\theta}(y \mid x)=\log \left(1+\exp \left\{-y x^{\top} \theta\right\}\right)$. Let $\hat{\theta}$ minimize the empirical logistic loss

$$
L_{n}(\theta):=n^{-1} \sum_{i=1}^{n} l_{\theta}\left(Y_{i} \mid x_{i}\right)=n^{-1} \sum_{i=1}^{n} \log \left(1+e^{-Y_{i} X_{i}^{\top} \theta}\right)
$$

for pairs $\left(X_{i}, Y_{i}\right)$ drawn from the logistic model with parameter θ_{0}. Assume in addition that the data $X_{i} \in \mathbb{R}^{d}$ are i.i.d. and satisfy

$$
E\left[X_{i} X_{i}^{\top}\right]=\Sigma>0, \quad \text { and } \quad E\left\|X_{i}\right\|_{2}^{4}<\infty
$$

that is the second moment of the X_{i} is positive definite.
(a) Let $L(\theta)=E\left[l_{\theta}(Y \mid X)\right]$ denote the population logistic loss. Show that the second order derivative evaluated at θ_{0} is positive definite. You may assume that the order of differentiation and integration may be exchanged.
(b) Under these assumptions show that $\hat{\theta}$ is consistent estimator of θ_{0} when $n \rightarrow \infty$. Provide details of your work (definitions, theorems used should be cited from the notes).
(c) Provide an asymptotic distribution of $\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)$. You may assume here that $\hat{\theta}$ is consistent. Assume that $d=1$ and even simpler setting where $x \in\{-1,1\}$.
(d) Describe the effect of θ_{0} on the efficiency of $\hat{\theta}$.

