Mathematical Statistics (281ABC) - Qualifying Exam, May 26, 2009

- **Problem 1** (a) Define an exponential family, including the natural parameter(s) and the associated statistic(s):
 - (b) Describe two useful properties of the exponential family, explain why they are useful (be as specific as you can).
- Problem 2 (a) Verify that the Poisson distribution with probability function

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
. $\lambda > 0, x = 0, 1, 2, ...$

belongs to the exponential family:

- (b) Given data $X_1, ..., X_n$ i.i.d. Poisson(λ), find the UMVU estimator of λ^k , for k = 1, 2, ...:
- (c) For the same data, find the UMVU estimator of $e^{-\lambda} = P(X = 0)$.
- **Problem 3** (a) Define the score test for a random sample from a parametric family of distributions; describe what hypotheses it tests, and give its asymptotic distribution under the null hypothesis (when regularity conditions are met). What do you know about its distribution under the alternative hypothesis?
 - (b) Describe Pearson's chi-squared goodness-of-fit test for a multinomial distribution with known probabilities.
 - (c) Show that the above Pearson's test is a score test.
- **Problem 4** Let (X_i, δ_i) , i = 1, ..., n, be independent, possibly right-censored survival data, where $X_i = \min(T_i, C_i)$, $\delta_i = I(T_i \leq C_i)$. Assume that C_i follows the random censorship assumption, and is independent of T_i . Assume that T_i follows the exponential distribution with hazard $\lambda_i = \exp(\beta' z_i) = \exp(\beta_0 + \beta_1 z_{i1} + ... + z_{ip})$, where z_i is a vector of subject specific covariates, and β is a vector of unknown parameters.
 - (a) Write down the likelihood function $L(\beta)$ for this data;
 - (b) Does the likelihood function have a unique maximum? under what conditions?
 - (c) Derive the maximum likelihood estimate (MLE) $\hat{\beta}$ of β , and explain how you would estimate its variance.
 - (d) Now consider the special case of two group comparison, i.e. $z_i = 0$ for the control group, and $z_i = 1$ for the experimental group. Provide the formula for MLE of β_0 and β_1 and their estimated variances (Hint: you can also do this part directly, regardless of the previous parts). How does this relate to the one-sample exponential estimation?