Math 281AB Qualifying Exam

Professor Jelena Bradic

May 10, 2022

Let \mathcal{G} be a convex and symmetric class of functions $g: \mathbb{R} \rightarrow \mathbb{R}$ equipped with norm $\|\cdot\|_{\mathcal{G}}$. Consider a class of functions over \mathbb{R}^{d} as follows

$$
\mathcal{F}_{\text {add }}=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R} \mid f=\sum_{j=1}^{d} g_{j} \text { for some } g_{j} \in \mathcal{G} \text { with }\left\|g_{j}\right\|_{\mathcal{G}} \leq 1\right\}
$$

Suppose we have n, i.i.d. samples of the form

$$
y_{i}=f^{*}\left(x_{i}\right)+\sigma \varepsilon_{i},
$$

where each $x_{i}=\left(x_{i 1}, \cdots, x_{i d}\right) \in \mathbb{R}^{d}, \varepsilon_{i}$ are mean zero sub-Gaussian random variables with sub-Gaussian parameter σ.

Suppose $f^{*}=\sum_{j=1}^{d} g_{j}^{*}$ for some $g_{j} \in \mathcal{G}$. We estimate f^{*} by constrained least-squares estimate

$$
\hat{f}=\arg \min _{f \in \mathcal{F}_{\text {add }}}\left\{n^{-1} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}\right\} .
$$

Find a high-probability, tight, upper bound on the estimation error $\left\|\hat{f}-f^{*}\right\|_{n}^{2}$, if we suppose that there exists a constant $K \geq 1$ such that the following inequality holds

$$
\sum_{j=1}^{d}\left\|g_{j}\right\|_{n}^{2} \leq K\left\|\sum_{j=1}^{d} g_{j}\right\|_{n}^{2}
$$

NOTE: All details of the computation must be present. Examples and Exercises from the book cannot be used as statements. Theorems and Propositions/Lemmas can be used as statements when and if bounding all the needed terms. Provide ALL the details of your work. Write legibly: points will be taken off if it is impossible to read what was written. Submit your work by sending an email to jbradic@ucsd.edu.

QUAL EXAM: MATH 281C - Spring 2022

Problem 3. (Hypothesis Testing for Exponential Distributions)

Let X_{1}, \ldots, X_{n} be a sample from a distribution with exponential density $a^{-1} e^{-(x-b) / a}$ for $x \geq b$. Denote by $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ the order statistics of $\left\{X_{i}\right\}_{i=1}^{n}$.
(a) For testing $H_{0}: a=1$, show that there exists a UMP unbiased test given by the acceptance region

$$
C_{1} \leq 2 \sum_{i=1}^{n}\left(X_{i}-X_{(1)}\right) \leq C_{2}
$$

where the test statistics has a χ^{2}-distribution with $2 n-2$ degrees of freedom when $\alpha=1$, and C_{1}, C_{2} are determined by

$$
\int_{C_{1}}^{C_{2}} \chi_{2 n-2}^{2}(y) \mathrm{d} y=\int_{C_{1}}^{C_{2}} \chi_{2 n}^{2}(y) \mathrm{d} y=1-\alpha
$$

(b) For testing $H_{0}: b=0$, show that there exists a UMP unbiased test given by the acceptance region

$$
0 \leq \frac{n X_{(1)}}{\sum_{i=1}^{n}\left(X_{i}-X_{(1)}\right)} \leq C
$$

When $b=0$, the test statistics had probability density

$$
p(u)=\frac{n-1}{(1+u)^{n}}, \quad u \geq 0
$$

Hint: You may use the following property to solve the above question. Define random variables

$$
Z_{1}=n\left(X_{(1)}-b\right), \quad Z_{i}=(n-i+1)\left(X_{(i)}-X_{(i-1)}\right), i=2, \ldots, n .
$$

Then $2 Z_{1} / a, 2 Z_{2} / a, \ldots, 2 Z_{n} / a$ are independently distributed as χ^{2} with 2 degrees of freedom.

