Math 281 – Qualifying Exam – Spring 2020

Define any symbol you use unless its meaning is clear from context. Name any result you use if it has a name. Be concise and clear. Justify all your answers.

Problem 1. Suppose that we observe data in pairs $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$, where the data come from a linear model

$$Y = X^{\mathrm{T}}\beta^* + \varepsilon,$$

where $\beta^* \in \mathbb{R}^d$ is the (unknown) vector of regression coefficients, and ε is the noise variable. Assume that ε and X are independent, ε is symmetric around 0 and $\mathbb{E}(\varepsilon^2) = \sigma^2 > 0$. Given $\tau > 0$, consider a loss function

$$\ell_{\tau}(x) = \tau^2 \ell(x/\tau), \ x \in \mathbb{R},$$

where $\ell : \mathbb{R} \to [0, \infty)$ is a function chosen from the following three: (i) $\ell(x) = \sqrt{1 + x^2} - 1$, (ii) $\ell(x) = \log((e^x + e^{-x})/2)$, and (iii) $\ell(x) = (x^2/2 - |x|^3/6)1(|x| \le 1) + (|x|/2 - 1/6)1(|x| > 1)$. Given independent observations $(X_1, Y_1), \ldots, (X_n, Y_n)$ from (X, Y), let $\hat{\beta}_n$ be an *M*-estimator of β^* that minimizes the empirical loss

$$L_n(\beta) = \frac{1}{n} \sum_{i=1}^n \ell_\tau (Y_i - X_i^{\mathrm{T}} \beta) = \frac{\tau^2}{n} \sum_{i=1}^n \ell ((Y_i - X_i^{\mathrm{T}} \beta) / \tau).$$

That is, $\hat{\beta}_n \in \arg\min_{\beta \in \mathbb{R}^d} L_n(\beta)$. Assume in addition that $\Sigma = \mathbb{E}(XX^T)$ is positive definite and $\mathbb{E}||X||_2^4 < \infty$.

- (a) Let $L(\beta) = \mathbb{E}L_n(\beta)$ be the population loss function. Describe conditions under which β^* is the unique minimizer of $\beta \mapsto L(\beta)$, that is, $\beta^* \in \arg \min_{\beta \in \mathbb{R}^d} L(\beta)$.
- (b) Under the conditions from part (a), provide a rigorous proof of the consistency of $\hat{\beta}_n$, that is, $\hat{\beta}_n \to \beta^*$ in probability as $n \to \infty$ (while *d* is fixed). You can either pick a specific ℓ function from the above three candidates, or provide a generic proof that applies to all three cases.
- (c) Provided the consistency of $\hat{\beta}_n$ holds, describe the asymptotic covariance matrix of $\hat{\beta}_n$. Provide a heuristic argument to justify your findings.

Problem 2. Assume the same conditions of Problem 2 hold, but consider a different loss function $\ell_{\tau}(x) = (x^2/2)1(|x| \le \tau) + (\tau|x| - \tau^2/2)1(|x| > \tau)$ for some $\tau > 0$. Given an iid sample $\{(X_i, Y_i)\}_{i=1}^n$, consider the empirical risk minimization procedure

$$\hat{\beta}_n \in \underset{\beta \in \Theta}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell_\tau(Y_i - X_i^{\mathrm{T}}\beta)}_{L_n(\beta)},$$

where Θ is a subset of \mathbb{R}^d . The following result, known as the *Ledoux-Talagrand Rademacher* contraction inequality, may be useful for this question. Let $\phi \circ \mathcal{F} = \{h : h(x) = \phi(f(x)), f \in \mathcal{F}\}$ denote the composition of $\phi(\cdot)$ with functions in \mathcal{F} . If $\phi(\cdot)$ is *L*-Lipschitz, then $R_n(\phi \circ \mathcal{F}) \leq LR_n(\mathcal{F})$, where R_n denotes the Rademacher complexity.

(a) Assume $\Theta = \{\beta \in \mathbb{R}^d : \|\beta\|_2 \leq R\}$ for some R > 0, and $\mathbb{E}\|X\|_2^2 < \infty$. Describe conditions under which

$$\sup_{\beta \in \Theta} |L_n(\beta) - L(\beta)| \to 0 \text{ in probability}$$

as $n \to \infty$, where $L(\beta) := \mathbb{E}L_n(\beta)$ is the population loss.

(b) Let $\Theta = \{\beta \in \mathbb{R}^d : \|\beta\|_2 \leq R\}$ for some R > 0, and let X be supported on an ℓ_2 ball $\{x \in \mathbb{R}^d : \|x\|_2 \leq M\}$. Give the smallest $\epsilon_n(\delta, d, \tau, R, M)$ you can (ignoring the constants) such that

$$\mathbb{P}\left\{\sup_{\theta\in\Theta}|L_n(\beta) - L(\beta)| \ge \epsilon_n(\delta, d, \tau, R, M)\right\} \le \delta$$

(c) Let $\Theta = \{\beta \in \mathbb{R}^d : \|\beta\|_1 \leq R\}$ for some R > 0, and let X be supported on an ℓ_{∞} -ball $\{x = (x_1, \dots, x_d)^T \in \mathbb{R}^d : \|x\|_{\infty} = \max_{1 \leq j \leq d} |x_j| \leq M\}$. Give the smallest $\epsilon_n(\delta, d, \tau, R, M)$ you can (ignoring the constants) such that

$$\mathbb{P}\left\{\sup_{\theta\in\Theta} |L_n(\beta) - L(\beta)| \ge \epsilon_n(\delta, d, \tau, R, M)\right\} \le \delta.$$

Refer by number any result from the reference sheet that you use.

Problem 3. Consider a setting where $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, \sigma^2)$. We consider the problem of estimating θ under square error loss. The variance σ is assumed known except when otherwise specified.

- (a) Consider the average risk with respect to the $\mathcal{N}(0, \tau^2)$ prior (where τ is known). Derive the best estimator for that measure of risk and compute its risk.
- (b) Prove that the sample mean is minimax. Is the sample mean minimax if it is known that $\theta \in [-1, 1]$? Is the sample mean minimax when σ is unknown? Is the sample mean minimax when σ is unknown but it is known that $\sigma \in [1/10, 10]$?
- (c) (Assume again that σ^2 is known.) Prove that \bar{X} is admissible. For what values of $a, b \in \mathbb{R}$ is $a\bar{X} + b$ admissible?