Topology Qualifying Exam, Spring 2000

- 1. Let X be a path connected topological space which is NOT compact. Show that $H^0_{comp}(X) = 0$.
- 2. Compute $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z})$.
- 3. Compute the cohomology ring of $\mathbb{CP}^3 \times \mathbb{RP}^2$.
- 4. Let X be the suspension of \mathbb{RP}^2 , i.e.

$$X = \mathbb{RP}^2 \times [0,1] / (\mathbb{RP}^2 \times \{0\}), (\mathbb{RP}^2 \times \{1\}).$$

Prove that X is not homotopy equivalent to a compact manifold.

For the last two problems we'll need the following definition: If M, N are connected closed oriented manifolds of the same dimension and $f: M \to N$ is a continuous map, then the degree $\deg(f) \in \mathbb{Z}$ is defined by

$$f_*[M] = \deg(f) \cdot [N] \in H_n(N; \mathbb{Z}).$$

- 5. Prove that any continuous map $f: S^2 \times S^2 \to \mathbb{CP}^2$ has even degree.
- 6. Let M^n be a connected closed oriented manifold and assume that there is a degree one map $f: S^n \to M^n$. Show that $H_i(M; \mathbb{F}) = 0$ for all 0 < i < n and any field \mathbb{F} .