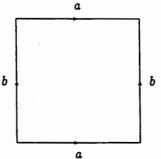
Qualifying Exam

- 1. Let G be a group of homeomorphisms acting freely on S^{2n} so that for all $g \in G$ gx = x for some x if and only if g = 1. Prove $|G| \leq 2$.
- 2. Let $f: S^n \longrightarrow S^n$ be a continuous function such that f(-x) = f(x). Prove deg f is even.
- 3. Consider the following space X obtained by identifying the edges of the unit square in the following manner:



- (a) Compute $H_*(X;\mathbb{Z})$ and $H^*(X;\mathbb{Z})$.
- (b) Prove X is an orientable manifold.
- (c) Compute the ring structure of $H^{\bullet}(X; \mathbb{Z})$.
- 4. Let $p: E \longrightarrow X$ be a covering space.
 - (a) If X is a manifold prove E is also.
 - (b) If X is a topological group, sketch a proof that there is a multiplication map $m: E \times E \longrightarrow E$ such that $pm = \mu(p \times p)$ where $\mu: X \times X \longrightarrow X$ is the multiplication on X.
 - (c) If X is a cell complex, prove E is also.
- 5. Let $S^n \xrightarrow{f} \mathbb{RP}^n$ be the covering space map. Prove f is not null homotopic.
- 6. Let X be an *n*-dimensional manifold and X^0 its *R*-orientation sheaf. Give *R* the discrete topology. If X is *R*-orientable prove X^0 is homeomorphic to $X \times R$.
- 7. If all *n*-fold cup products vanish on $H^*(Y)$ and $f: X \longrightarrow Y$ is a continuous map, prove all n + 1 fold cup products vanish in $H^*(Cf)$ where Cf is the mapping cone of f.
- 8. Let M be an *n*-dimensional compact connected orientable manifold. Let $\zeta_M \in H_n(M; \mathbb{Z})$ be the fundamental class. Suppose $f : S^n \longrightarrow M$ is a continuous function with $f_*(\zeta_s) = \zeta_M$. Prove $H_*(S^n; \mathbb{Z}) \cong H_*(M; \mathbb{Z})$.
- 9. Let $S^1 \vee S^1$ be the one point union of circles. Prove $\pi_1(S^1 \vee S^1, x_0)$ is not abelian.
- 10. Let $p: E \longrightarrow X$ be a covering space and let $C \subseteq E$ be a connected component of E. prove $p_{ic}: C \longrightarrow X$ is also a covering space.