Fall Applied Algebra Qualifying Exam: Part A

5:00pm-8:00pm (PDT), via Zoom. Meeting ID: 94305144675
Tuesday September 7th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.
- Notation:
- $\mathcal{M}_{m, n}$ denotes the set of $m \times n$ matrices with complex components.
- \mathcal{M}_{n} denotes the set $\mathcal{M}_{m, n}$ with $m=n$.
$-\mathbb{C}^{n}$ is the set of column vectors with n complex components.
$-x^{H}$ is the Hermitian transpose of a vector or matrix x.
$-\operatorname{eig}(A)$ is the set of eigenvalues of the matrix A (counting multiplicities).
$-\operatorname{Re}(\alpha)$ is the real part of the complex scalar α.
$-\operatorname{Im}(\alpha)$ is the imaginary part of the complex scalar α.

Question 1.

(a) (3 points) State, but do not prove, the Schur decomposition theorem for a matrix $A \in M_{n}$.
(b) (12 points) Prove that for $A, B \in \mathcal{M}_{n}$, if $x^{H} A x=x^{H} B x$ for all $x \in \mathbb{C}^{n}$, then $A=B$. Give an example for which $x^{T} A x=x^{T} B x$ for all $x \in \mathbb{C}^{n}$ but $A \neq B$.
(c) (10 points) Prove that A is an orthogonal projection if and only if A is Hermitian, i.e., $A=A^{H}$.

Question 2. Assume that the eigenvalues of a Hermitian matrix $A \in \mathcal{M}_{n}$ are arranged in the order

$$
\lambda_{n}(A) \leq \cdots \leq \lambda_{2}(A) \leq \lambda_{1}(A) .
$$

(a) (5 points.) Let $A \in \mathcal{M}_{n}$ be Hermitian. Prove that

$$
\lambda_{n}=\min _{x \neq 0} \frac{x^{H} A x}{x^{H} x} .
$$

(b) (8 points) Prove that every $A \in \mathcal{M}_{n}$ may be written uniquely as $A=S+i T$, where S and T are Hermitian.
(c) (12 points) For any $A \in \mathcal{M}_{n}$, consider the unique expansion $A=S+i T$, where S and T are Hermitian. Prove that for any $\lambda \in \operatorname{eig}(A)$, it holds that

$$
\lambda_{n}(S) \leq \operatorname{Re}(\lambda) \leq \lambda_{1}(S) \quad \text { and } \quad \lambda_{n}(T) \leq \operatorname{Im}(\lambda) \leq \lambda_{1}(T)
$$

Question 3.

(a) (2 points) Define $A^{\frac{1}{2}}$ for a positive semidefinite $A \in \mathcal{M}_{n}$.
(b) (2 points) Define $|A|$ for any $A \in \mathcal{M}_{m, n}$.
(c) (7 points) Prove that the eigenvalues of $|A|$ are the singular values of A.
(d) (7 points) Prove that A is positive semidefinite if and only if $|A|=A$.
(e) (7 points) Prove that $|A|$ and $\left|A^{H}\right|$ are similar.

Question 4.

(a) (4 points.) Define the p-norm $\|A\|_{p}$ and Frobenius norm $\|A\|_{F}$ of a matrix $A \in \mathcal{M}_{m, n}$.
(b) (6 points.) For every $A \in \mathcal{M}_{m, n}$, establish the following identities:
(i) $\left\|A^{H}\right\|_{2}=\|A\|_{2}$.
(ii) $\left\|A^{H} A\right\|_{2}=\left\|A^{H}\right\|_{2}\|A\|_{2}$.
(c) (6 points.) Given two n-vectors x and y and the matrix $Z=x y^{H}$, show that

$$
\|Z\|_{2}=\|Z\|_{F}=\|x\|_{2}\|y\|_{2} .
$$

(d) (9 points.) Prove that the Frobenius norm and the matrix two-norm are invariant under unitary transformations, i.e., show that if P and Q are unitary matrices of suitable dimension, then

$$
\|A\|_{2}=\|P A Q\|_{2} \text { and }\|A\|_{F}=\|P A Q\|_{F} .
$$

Applied Algebra Qualifying Exam: Part B

 Fall 2021Instructions: Do all problems. All problems are weighted equally. You are not allowed to consult any external resource during this exam. Good luck!

Problem 1: Let G be a finite group and let V be an irreducible complex representation of G. If $g \in G$ lies in the center of G, show that there exists $c \in \mathbb{C}$ with

$$
g \cdot v=c v
$$

for all $v \in V$.

Problem 2: Let \mathbb{Z} be the additive group of integers. Is every indecomposable \mathbb{Z}-module over the complex numbers irreducible?

Problem 3: Write down the character table of the symmetric group S_{4}. If we let

$$
X:=\{\text { all 2-element subsets of }\{1,2,3,4\}\}
$$

then X carries a natural permutation action of S_{4}. Find the decomposition of $\mathbb{C}[X]$ into irreducibles.

Problem 4: Find the character table of the dihedral group D_{4} of symmetries of a square. The group algebra of D_{4} is isomorphic to a direct sum

$$
\mathbb{C}\left[D_{4}\right] \cong \operatorname{Mat}_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus \operatorname{Mat}_{n_{r}}(\mathbb{C})
$$

of matrix algebras over \mathbb{C}. Determine r and the numbers $n_{1}, \ldots, n_{r}>0$. (Hint: Try showing that $\mathbb{C}\left[D_{4}\right] \cong \operatorname{End}_{D_{4}} \mathbb{C}\left[D_{4}\right]$ as algebras. How does the endomorphism ring of $\mathbb{C}\left[D_{4}\right]$ decompose?)

Applied Algebra Qualifying Exam: Part C

5:00pm-8:00pm (PDT), via Zoom.
Tuesday September 7th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do both problems. Show your work.
- This part of the exam will represent 20% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.

Question 1.

(a) (2 points) Let $\mathrm{C}(d)$ be the group generated by the cyclic permutation $\gamma=$ $(12 \ldots d)$ in the symmetric group $S(d)$. Explicitly describe the dual group of C(d).
(b) (8 points) State the definition of the Cayley graph of $\mathrm{C}(d)$, and find its eigenvalues and eigenvectors.

Question 2. Let γ

(a) (2 points.) Given a Young diagram $\alpha \vdash d$, identity the corresponding conjugacy class $C_{\alpha} \subset \mathrm{S}(d)$ with the formal sum of its elements, so that it becomes an element of the group algebra $\mathbb{C S}(d)$. Given another Young diagram $\lambda \vdash d$, show that C_{α} acts in the corresponding irreducible representation V^{λ} of $\mathbb{C S}(d)$ as multiplication by a scalar, $\omega_{\alpha}^{\lambda}$, and express this number in terms of the character of V^{λ}.
(b) (8 points) Compute the $\omega_{\alpha}^{\lambda}$ explicitly in the case that $\alpha=(d)$ is the Young diagram consisting of a single row of d cells.

