Fall Applied Algebra Qualifying Exam: Part A

5:00pm-8:00pm (PDT), via Zoom. Meeting ID: 943 0514 4675 Tuesday September 7th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.
- Notation:
 - $-\mathcal{M}_{m,n}$ denotes the set of $m \times n$ matrices with complex components.
 - \mathcal{M}_n denotes the set $\mathcal{M}_{m,n}$ with m = n.
 - $-\mathbb{C}^n$ is the set of column vectors with *n* complex components.
 - $-x^H$ is the Hermitian transpose of a vector or matrix x.
 - $\operatorname{eig}(A)$ is the set of eigenvalues of the matrix A (counting multiplicities).
 - $\operatorname{Re}(\alpha)$ is the real part of the complex scalar α .
 - $\operatorname{Im}(\alpha)$ is the imaginary part of the complex scalar α .

Question 1.

- (a) (3 points) State, but do not prove, the Schur decomposition theorem for a matrix $A \in M_n$.
- (b) (12 points) Prove that for $A, B \in \mathcal{M}_n$, if $x^H A x = x^H B x$ for all $x \in \mathbb{C}^n$, then A = B. Give an example for which $x^T A x = x^T B x$ for all $x \in \mathbb{C}^n$ but $A \neq B$.
- (c) (10 points) Prove that A is an orthogonal projection if and only if A is Hermitian, i.e., $A = A^{H}$.

Question 2. Assume that the eigenvalues of a Hermitian matrix $A \in \mathcal{M}_n$ are arranged in the order

$$\lambda_n(A) \leq \cdots \leq \lambda_2(A) \leq \lambda_1(A).$$

(a) (5 points.) Let $A \in \mathcal{M}_n$ be Hermitian. Prove that

$$\lambda_n = \min_{x \neq 0} \frac{x^H A x}{x^H x}.$$

- (b) (8 points) Prove that every $A \in \mathcal{M}_n$ may be written uniquely as A = S + iT, where S and T are Hermitian.
- (c) (12 points) For any $A \in \mathcal{M}_n$, consider the unique expansion A = S + iT, where S and T are Hermitian. Prove that for any $\lambda \in \text{eig}(A)$, it holds that

$$\lambda_n(S) \leq \operatorname{Re}(\lambda) \leq \lambda_1(S) \text{ and } \lambda_n(T) \leq \operatorname{Im}(\lambda) \leq \lambda_1(T).$$

Question 3.

- (a) (2 points) Define $A^{\frac{1}{2}}$ for a positive semidefinite $A \in \mathcal{M}_n$.
- (b) (2 points) Define |A| for any $A \in \mathcal{M}_{m,n}$.
- (c) (7 points) Prove that the eigenvalues of |A| are the singular values of A.
- (d) (7 points) Prove that A is positive semidefinite if and only if |A| = A.
- (e) (7 points) Prove that |A| and $|A^H|$ are similar.

Question 4.

- (a) (4 points.) Define the *p*-norm $||A||_p$ and Frobenius norm $||A||_F$ of a matrix $A \in \mathcal{M}_{m,n}$.
- (b) (6 points.) For every $A \in \mathcal{M}_{m,n}$, establish the following identities:
 - (i) $||A^H||_2 = ||A||_2$.
 - (ii) $||A^HA||_2 = ||A^H||_2 ||A||_2.$
- (c) (6 points.) Given two *n*-vectors x and y and the matrix $Z = xy^{H}$, show that

$$||Z||_2 = ||Z||_F = ||x||_2 ||y||_2.$$

(d) (9 points.) Prove that the Frobenius norm and the matrix two-norm are invariant under unitary transformations, i.e., show that if P and Q are unitary matrices of suitable dimension, then

$$||A||_2 = ||PAQ||_2$$
 and $||A||_F = ||PAQ||_F$.

Applied Algebra Qualifying Exam: Part B Fall 2021

Instructions: Do all problems. All problems are weighted equally. You are not allowed to consult any external resource during this exam. Good luck!

Problem 1: Let G be a finite group and let V be an irreducible complex representation of G. If $g \in G$ lies in the center of G, show that there exists $c \in \mathbb{C}$ with

 $g \cdot v = cv$

for all $v \in V$.

Problem 2: Let \mathbb{Z} be the additive group of integers. Is every indecomposable \mathbb{Z} -module over the complex numbers irreducible?

Problem 3: Write down the character table of the symmetric group S_4 . If we let

 $X := \{ \text{all 2-element subsets of } \{1, 2, 3, 4\} \}$

then X carries a natural permutation action of S_4 . Find the decomposition of $\mathbb{C}[X]$ into irreducibles.

Problem 4: Find the character table of the dihedral group D_4 of symmetries of a square. The group algebra of D_4 is isomorphic to a direct sum

$$\mathbb{C}[D_4] \cong \operatorname{Mat}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \operatorname{Mat}_{n_r}(\mathbb{C})$$

of matrix algebras over \mathbb{C} . Determine r and the numbers $n_1, \ldots, n_r > 0$. (Hint: Try showing that $\mathbb{C}[D_4] \cong \operatorname{End}_{D_4} \mathbb{C}[D_4]$ as algebras. How does the endomorphism ring of $\mathbb{C}[D_4]$ decompose?)

Applied Algebra Qualifying Exam: Part C

5:00pm-8:00pm (PDT), via Zoom. Tuesday September 7th, 2021

- Write your name and student PID at the top right corner of each page of your submission.
- Do both problems. Show your work.
- This part of the exam will represent 20% of the total score.
- Your completed examination must be uploaded to Gradescope while you are connected to Zoom. You may leave the meeting once the Proctor has checked that your exam has been uploaded.
- It is your responsibility to check that any uploaded material is both complete and legible.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Please keep your camera turned on throughout the exam.

Question 1.

(a) (2 points) Let C(d) be the group generated by the cyclic permutation $\gamma = (1 \ 2 \ \dots \ d)$ in the symmetric group S(d). Explicitly describe the dual group of C(d).

(b) (8 points) State the definition of the Cayley graph of C(d), and find its eigenvalues and eigenvectors.

Question 2. Let γ

(a) (2 points.) Given a Young diagram $\alpha \vdash d$, identity the corresponding conjugacy class $C_{\alpha} \subset S(d)$ with the formal sum of its elements, so that it becomes an element of the group algebra $\mathbb{C}S(d)$. Given another Young diagram $\lambda \vdash d$, show that C_{α} acts in the corresponding irreducible representation V^{λ} of $\mathbb{C}S(d)$ as multiplication by a scalar, $\omega_{\alpha}^{\lambda}$, and express this number in terms of the character of V^{λ} .

(b) (8 points) Compute the $\omega_{\alpha}^{\lambda}$ explicitly in the case that $\alpha = (d)$ is the Young diagram consisting of a single row of d cells.