Complex Analysis Qualifying Exam - Fall 2021

Name: \qquad

Student ID: \qquad

Instructions:

You do not have to reprove any results from Conway. However, if using a homework problem, please make sure you reprove it.

You have 180 minutes to complete the test.
Notation: $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		70
Total		

Problem 1. [10 points.]
Compute the following integral via residues

$$
\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x
$$

Please explain the necessary estimates.

Problem 2. [10 points; 5, 5.]
Let $K=\{z \in \mathbb{C}:|z| \leq 3,|z-1| \geq 1,|z+1| \geq 1\}$.
(i) True/false: every holomorphic function in a neighborhood of K is the local uniform limit on K of a sequence of polynomials. Please justify your answer.
(ii) Determine, with justification, the set

$$
\widehat{K}=\left\{z \in \mathbb{C}:|p(z)| \leq \sup _{w \in K}|p(w)| \text { for all polynomials } p\right\}
$$

Problem 3. [10 points; 5, 5.]
Let $a, b: \mathbb{C} \rightarrow \mathbb{C}$ be entire functions. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that

$$
f(z)^{2}+a(z) f(z)+b(z)=0 .
$$

(i) Show that if a, b have finite order, then f is also of finite order.
(ii) Show that if a, b are polynomials, then f is also a polynomial.

Problem 4. [10 points.]
Let $a_{n} \in \Delta$ be a sequence such that $a_{n} \rightarrow 1$. Let $f_{n}: \Delta \rightarrow \Delta$ be a sequence of holomorphic functions such that $f_{n}(0)=a_{n}$. Show that $f_{n} \rightarrow 1$ uniformly on compact subsets of Δ.

Problem 5. [10 points; 5, 5.]
Let $G=\{z=x+i y: x>0, y>0, x y<1\}$.
(i) Construct a biholomorphism between G and the trip $S=\{z=x+i y, 0<y<1\}$.
(ii) Construct an unbounded continuous function $u: \bar{G} \rightarrow \mathbb{R}$, harmonic in G, and such that u vanishes on ∂G.

Problem 6. [10 points.]
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that $|f(z)|=1$ for $|z|=1$. Show that there exists $a \in \mathbb{C}$ and $n \geq 0$ such that $f(z)=a z^{n}$.

Problem 7. [10 points.]
Describe all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that for all $z \in \mathbb{R}$ we have $|f(z)|=1$.

