Complex Analysis Qualifying Exam – Fall 2021

Name: _____

Student ID: _____

Instructions:

You do not have to reprove any results from Conway. However, if using a homework problem, please make sure you reprove it.

You have 180 minutes to complete the test.

Notation: $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}.$

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		10
Total		70

Problem 1. [10 points.]

Compute the following integral via residues

$$\int_0^\infty \frac{1 - \cos x}{x^2} \, dx.$$

Please explain the necessary estimates.

Problem 2. [10 points; 5, 5.]

Let $K = \{z \in \mathbb{C} : |z| \le 3, |z-1| \ge 1, |z+1| \ge 1\}.$

- (i) True/false: every holomorphic function in a neighborhood of K is the local uniform limit on K of a sequence of polynomials. Please justify your answer.
- (ii) Determine, with justification, the set

$$\widehat{K} = \{ z \in \mathbb{C} : |p(z)| \le \sup_{w \in K} |p(w)| \text{ for all polynomials } p \}.$$

Problem 3. [10 points; 5, 5.]

Let $a, b: \mathbb{C} \to \mathbb{C}$ be entire functions. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that

$$f(z)^{2} + a(z)f(z) + b(z) = 0.$$

- (i) Show that if a, b have finite order, then f is also of finite order.
- (ii) Show that if a, b are polynomials, then f is also a polynomial.

Problem 4. [10 points.]

Let $a_n \in \Delta$ be a sequence such that $a_n \to 1$. Let $f_n : \Delta \to \Delta$ be a sequence of holomorphic functions such that $f_n(0) = a_n$. Show that $f_n \to 1$ uniformly on compact subsets of Δ .

Problem 5. [10 points; 5, 5.]

Let $G = \{z = x + iy : x > 0, y > 0, xy < 1\}.$

- (i) Construct a biholomorphism between G and the trip $S = \{z = x + iy, 0 < y < 1\}.$
- (ii) Construct an unbounded continuous function $u: \overline{G} \to \mathbb{R}$, harmonic in G, and such that u vanishes on ∂G .

Problem 6. [10 points.]

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that |f(z)| = 1 for |z| = 1. Show that there exists $a \in \mathbb{C}$ and $n \ge 0$ such that $f(z) = az^n$.

Problem 7. [10 points.]

Describe all entire functions $f : \mathbb{C} \to \mathbb{C}$ such that for all $z \in \mathbb{R}$ we have |f(z)| = 1.