MATH 240 Qualifying Exam September 14, 2021

Instructions: 3 hours, open book/notes (only Folland or personal lecture notes; no HW or other solutions). You may use without proofs results proved in Folland up to Section 8.3. Present your solutions clearly, with appropriate detail.

1. (30 pts) Let $f \in C(\mathbb{R})$ and let $A \subseteq \mathbb{R}$ be a Borel set such that f is differentiable at each $x \in \mathbb{R} \setminus A$ and f'(x) = 0 for all such x.

(a) If A is closed and countable, show that f is constant.

(b) If A has Lebesgue measure 0, must f be constant? Prove or find a counterexample.

2. (30 pts) Does there exist a Borel measurable function $f : \mathbb{R} \to [0, \infty)$ such that $\int_a^b f(x) dx = \infty$ for all real numbers a < b? Either find an example or show that no such f exists.

3. (30 pts) Let $p \in (1, \infty)$, and for $f \in L^p(\mathbb{R})$ define $Tf(x) := \int_0^1 f(x+y) \, dy$.

(a) Show that $||Tf||_p \leq ||f||_p$, and equality holds if and only if f = 0 almost everywhere.

(b) Prove that $(I - T)(L^p(\mathbb{R})) \neq L^p(\mathbb{R})$, where I is the identity map on $L^p(\mathbb{R})$.

4. (30 pts) Let functions $f_n \in C([0,1])$ satisfy $\sup_n |f_n(x)| < \infty$ for each $x \in [0,1]$. Show that there are $0 \le a < b \le 1$ such that $\sup_n ||f_n\chi_{(a,b)}||_u < \infty$.

5. (20 pts) Let $f_n, f \in L^2(\mathbb{R})$ satisfy $f_n \to f$ weakly and $||f_n||_2 \to ||f||_2$ as $n \to \infty$. Show that $f_n \to f$ in $L^2(\mathbb{R})$.

6. (30 pts) Let δ_x denote the Dirac delta mass at $x \in \mathbb{R}^n$. Let $\{x_j\}_{j=1}^{\infty}$ be a sequence in \mathbb{R}^n , $\{c_j\}_{j=1}^{\infty}$ a sequence of positive numbers, and μ the Borel measure on \mathbb{R}^n corresponding to the series $\sum_{j=1}^{\infty} c_j \delta_{x_j}$. Prove that μ is Radon if and only if for all convergent subsequences $\{x_{j_k}\}_{k=1}^{\infty}$ it holds that $\sum_{k=1}^{\infty} c_{j_k} < \infty$.

7. (30 pts) For any $f \in L^2(\mathbb{R}) \cap C^1(\mathbb{R})$ show that

$$\left(\int_{\mathbb{R}} x^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} \xi^2 |\hat{f}(\xi)|^2 d\xi\right) \ge \frac{1}{16\pi^2} \left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^2.$$

Here \hat{f} is the Fourier transform of f and dx, $d\xi$ represent the Lebesgue measure on \mathbb{R} .