Math 142B Lecture, Wednesday, March 11, 2020

Theorem (Fundamental Theorem of Calculus, II)
Let \(f: [a, b] \rightarrow \mathbb{R} \) be an integrable function. Define \(F: [a, b] \rightarrow \mathbb{R} \) by \(F(x) = \int_a^x f(t) \, dt \). Then

1. \(F \) is continuous on \([a, b]\).
2. If \(f \) is continuous at some \(x_0 \in (a, b) \), then \(F \) is differentiable at \(x_0 \) and \(F'(x_0) = f(x_0) \).

Proof
1. Since \(f \) is bounded, \(\exists M > 0 \) such that \(|f(x)| \leq M \) for all \(x \in [a, b] \).

Let \(x_0 \in [a, b] \) and \(\epsilon > 0 \). Let \(x \in [a, b] \) with \(|x - x_0| < \frac{\epsilon}{M} \).

Assume \(x \geq x_0 \). Then we have

\[
|F(x) - F(x_0)| = \left| \int_{x_0}^x f(t) \, dt \right| \leq \int_{x_0}^x |f(t)| \, dt \\
\leq \int_{x_0}^x M \, dt = M \cdot (x - x_0) < \epsilon.
\]

Similarly, if \(x \leq x_0 \), then

\[
|F(x) - F(x_0)| < \epsilon.
\]

Thus, \(|F(x) - F(x_0)| < \epsilon \), \(\forall x \in [a, b] \) with \(|x - x_0| < \frac{\epsilon}{M} \).

This shows that \(F \) is continuous at \(x_0 \).

2. Assume \(f \) is continuous at \(x_0 \). Let \(\epsilon > 0 \).

Then \(\exists \delta > 0 \) such that if \(x \in [a, b] \) and \(|x - x_0| < \delta \), then \(|f(x) - f(x_0)| < \epsilon \).

Let \(x \in [a, b] \) with \(|x - x_0| < \delta \).

Assume \(x \geq x_0 \) (the case \(x \leq x_0 \) is similar).
Then \(\forall t \in [x_0, x] \), we have \(|t - x_0| \leq |x - x_0| < \delta \), hence \(|f(t) - f(x_0)| < \varepsilon \).

Since \(\frac{F(x) - F(x_0)}{x - x_0} = \int_{x_0}^{x} \frac{f(t)\, dt}{x - x_0} \), we get that

\[
\left| \frac{F(x) - F(x_0) - f(x_0)}{x - x_0} \right| = \left| \int_{x_0}^{x} \frac{f(t)\, dt}{x - x_0} - \frac{\int_{x_0}^{x} f(t)\, dt - \int_{x_0}^{x_0} f(x_0)\, dt}{x - x_0} \right|
\leq \int_{x_0}^{x} |f(t) - f(x_0)|\, dt \frac{1}{x - x_0}
\leq \int_{x_0}^{x} \varepsilon \, dt \frac{1}{x - x_0} = \varepsilon.
\]

In conclusion, \(\forall \varepsilon > 0, \exists \delta > 0 \) such that if \(x \in [a, b] \) and \(|x - x_0| < \delta \), then \(\left| \frac{F(x) - F(x_0) - f(x_0)}{x - x_0} \right| < \varepsilon \).

This shows that \(\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0) \), that is, \(F \) is differentiable at \(x_0 \) and \(F'(x_0) = f(x_0) \). \(\boxdot \)
Theorem 2 (change of variables)
Let \(u : J \to \mathbb{R} \) be a differentiable function, where \(J \) is an open interval, such that \(u' \) is continuous on \(J \).
Let \(f : I \to \mathbb{R} \) be a continuous function, where \(I \) is an open interval such that \(u(x) \in I \), \(\forall x \in J \).
Then
1. \(f \circ u : J \to \mathbb{R} \) is continuous and
2. \(\int_{u(a)}^{u(b)} f(u) \, du = \int_{a}^{b} f(u(x)) \cdot u'(x) \, dx \), \(\forall a < b \), \(u \in \mathcal{C}(J) \).

Proof: We already proved (1). For part (2), define
\[
F(u) = \int_{u(a)}^{u(b)} f(t) \, dt, \quad \forall u \in I.
\]
Since \(F \) is continuous \(\implies \) \(F \) is differentiable on \(I \) and
\[
F'(u) = f(u), \quad \forall u \in I.
\]
Thus, we have
\[
\int_{u(a)}^{u(b)} f(u) \, du \quad \overset{\text{FTC, I}}{=} \quad F(u(b)) - F(u(a))
\]
\[
\overset{\text{FTC, I}}{=} \int_{a}^{b} (F \circ u)' \, du
\]
\[
\overset{\text{chain rule}}{=} \int_{a}^{b} F'(u) \cdot u' \, du
\]
\[
= \int_{a}^{b} f(u(x)) \cdot u'(x) \, dx \quad \blacklozenge
\]
EXAMPLE Calculate \(\int_{0}^{1} \sqrt{1-u^2} \, du \).

Let \(u(x) = \sin x \), then \(u'(x) = \cos x \), so applying the change of variables formula gives that

\[
\int_{0}^{1} \sqrt{1-u^2} \, du = \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin^2 x \cdot \cos x} \, dx
\]

\[
= \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin^2 x} \cdot \cos x \, dx
\]

\[
= \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx
\]

\[
= \int_{0}^{\frac{\pi}{2}} \frac{\cos 2x + 1}{2} \, dx
\]

\[
= \left(\frac{\sin 2x}{4} + \frac{x}{2} \right) \bigg|_{0}^{\frac{\pi}{2}}
\]

\[
= \frac{\pi}{4} \cdot \Box
\]