First isomorphism theorem for rings

Alina Bucur

Theorem 1. Let $f : R \to S$ be a surjective ring homomorphism. Let I be an ideal of R such that ker $f \subset I$. Then

1. f(I) is an ideal in S.

2. $R/I \simeq S/f(I)$ as rings.

Proof. First we show that f(I) is an ideal in S. We already know that it is a subgroup of the abelian group (S, +). Fix $a \in I$ and $s \in S$. We need to show that $sf(a) \in f(I)$ and $f(a)s \in f(I)$.

Since f is surjective, there exists $r \in R$ such that f(r) = s. Since I is an ideal of R and $a \in I$, we know that $ar \in I$ and $ra \in I$. Hence $f(ar) \in f(I)$ and $f(ra) \in f(I)$.

Therefore

$$sf(a) = f(r)f(a) = f(ra) \in f(I)$$

and

$$f(a)s = f(a)f(r) = f(ar) \in f(I)$$

To prove the first part, let $g: S \to S/f(I)$ be the ring homomorphism given by g(s) = s + f(I). Then g is clearly surjective, which implies that $h = g \circ f: R \to S/f(I)$ is a surjective ring homomorphism.

Key observation: it is now enough to prove that ker h = I, because once we have this equality the fundamental isomorphism theorem will imply the desired result.

We have

$$a \in \ker h \iff h(a) = 0 + f(I) \iff f(a) + f(I) = 0 + f(I) \iff f(a) \in f(I).$$

This proves that $f(\ker h) = f(I)$. On the other hand, it is clear that if $a \in \ker f$ then f(a) = 0 and therefore $h(a) = 0 + f(I) \implies a \in \ker h$. That is to say, $\ker f \subset \ker h$.

Since ker h and I are both ideals of R that contain ker f and $f(\ker h) = f(I)$, problem 8b in the quiz practice problems implies that ker h = I.