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Section 3.2

1. (Problem 19) Prove Q(
√
2) is the smallest subfield of R containing

√
2.

Solution: We must show that if F is a subfield of R containing
√
2 then Q(

√
2)⊆ F; let F be such

a field. Prove that because F contains 1 (part of the definition of subfield) and is closed under
addition/additive inverses, Fmust contain all of Z. Then prove that because Fmust contain inverses
of nonzero elements, it follows that F contains all of Q. Now because F contains

√
2 and is closed

under multiplication, it must contain elements of the form b
√
2 where b ∈ Q. Finally, since it is

closed under addition, we conclude F contains all elements of the form a + b
√
2 where a, b ∈ Q,

i.e. F contains Q(
√
2).

2. (Problem 25) Let R be an integral domain and Q⊇R be its field of quotients. Prove if σ : R → R is
a (ring) automorphism, then there is a unique automorphism σ : Q → Q extending σ, i.e. satisfying
σ(r) = σ(r) for all r ∈ R.

Solution: We can define σ : Q → Q by σ( r
u
) = σ(r)

σ(u) (notice that u 6= 0 =⇒ σ(u) 6= 0 by
injectivity of σ). One verifies that this is a ring automorphism, for instance the calculation

σ(
r

u
+
s

v
) = σ(

rv+ su

uv
) =

σ(rv+ su)

σ(uv)

=
σ(r)σ(v) + σ(s)σ(u)

σ(u)σ(v)
=
σ(r)

σ(u)
+
σ(s)

σ(v)

= σ(
r

u
) + σ(

s

v
)

proves additivity.
For uniqueness, suppose ϕ : Q → Q is another automorphism satisfying ϕ(r) = σ(r) for all
r ∈ R. Since ϕ(1) = 1 (this is an axiom of ring homomorphisms), by multiplicativity we can
calculate for any r ∈ R

1 = ϕ(1) = ϕ(r · 1
r
) = ϕ(r)ϕ(

1

r
),

and from this we conclude that ϕ(1
r
) = 1

ϕ(r) . But then using multicativity again, along with the
fact that ϕ(a) = σ(a) for all a ∈ R, we calculate that for any element r

u
∈ Q,

ϕ(
r

u
) = ϕ(r · 1

u
) = ϕ(r)ϕ(

1

u
) = ϕ(r)

1

ϕ(u)
=
ϕ(r)

ϕ(u)
=
σ(r)

σ(u)
= σ(

r

u
),

and thus we conclude ϕ = σ, proving uniqueness.
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Section 3.3

3. (Problem 5)

(a) If A is an ideal of R and B is an ideal of S, prove A× B is an ideal of R× S.

Solution: If (a, b) ∈ A × B and (r, s) ∈ R × S, then (a, b)(r, s) = (ar, bs) which is
an element of A × B since ar ∈ A and bs ∈ B (since A and B are ideals). Similarly
(r, s)(a, b) ∈ A× B; checking it’s an additive subgroup is equally straightforward.

(b) Prove every ideal of R× S is of the form A× B as in (a).

Solution: Let I be an ideal of R×S; letA = {a ∈ R | (a, 0) ∈ I} and B = {b ∈ S | (0, b) ∈ I}.
One does the straightfoward verification that A and B are ideals, and we claim I = A× B.
On one hand if (a, b) ∈ A × B then a ∈ A implies (a, 0) ∈ I and b ∈ B implies (0, b) ∈ I,
and closure under addition then implies (a, b) ∈ I. In the other direction, if (a, b) ∈ I, then
multiplying by (1, 0) we deduce (a, 0) ∈ I and hence deduce a ∈ A; similarly b ∈ B so
(a, b) ∈ A× B, completing the proof of equality.

4. (Problem 9) Let R = Z[i] and in each of the following cases find the number of elements in R/A, and
describe the cosets.

(a) A = Ri,
(b) A = R(1− i),

Solution: I will write (i) or (1− i) instead of Ri or R(1− i), etc. For part (a), just notice that i is
a unit in R, so (i) = R and then R/A = 0 (i.e. there is one element of R/A).

For part (b), notice that because (1− i) +A = 0+A, we deduce i+A = 1+A, and therefore for
any a+ bi ∈ R we have (a+ bi) +A = (a+ b) +A. Now notice that 2 ∈ A = (1− i) because
2 = (1+ i)(1− i). Using this, notice that if a and b have the same parity (i.e. they are either both
even or both odd), then a + b is even so for some k ∈ Z we have a + b = 2k ∈ A (since 2 ∈ A
andA is an ideal), and thus we deduce that (a+b)+A = 0+A, and hence (a+bi)+A = 0+A.

On the other hand, if a and b have different parities then a+b is odd, so if a+b = 2k+1 for k ∈ Z
then we see using similar logic to above that (a+b)+A = 1+A, and hence (a+bi)+A = 1+A.

Thus we see we have at most two cosets, 0 + A and 1 + A, and we claim these are distinct; these
are the same coset if and only if 1 ∈ A, which is the case if and only if R = A = (1− i), which is
the case if and only if 1− i is a unit in R; but 1− i is not a unit in R because have the multiplicative
norm map N : R → Z defined previously, and using multiplicativity we see that if 1 − i is a unit
then we could conclude N(1− i) = ±1, but direct calculation shows N(1− i) = 2.


