Section 3.2

1. (Problem 19) Prove $\mathbf{Q}(\sqrt{2})$ is the smallest subfield of \mathbf{R} containing $\sqrt{2}$.

Solution: We must show that if F is a subfield of \mathbf{R} containing $\sqrt{2}$ then $\mathbf{Q}(\sqrt{2}) \subseteq F$; let F be such a field. Prove that because F contains 1 (part of the definition of subfield) and is closed under addition/additive inverses, F must contain all of \mathbf{Z}. Then prove that because F must contain inverses of nonzero elements, it follows that F contains all of \mathbf{Q}. Now because F contains $\sqrt{2}$ and is closed under multiplication, it must contain elements of the form $b \sqrt{2}$ where $b \in \mathbf{Q}$. Finally, since it is closed under addition, we conclude F contains all elements of the form $a+b \sqrt{2}$ where $a, b \in \mathbf{Q}$, i.e. F contains $\mathbf{Q}(\sqrt{2})$.
2. (Problem 25) Let R be an integral domain and $Q \supseteq R$ be its field of quotients. Prove if $\sigma: R \rightarrow R$ is a (ring) automorphism, then there is a unique automorphism $\bar{\sigma}: Q \rightarrow Q$ extending σ, i.e. satisfying $\bar{\sigma}(r)=\sigma(r)$ for all $r \in R$.

Solution: We can define $\bar{\sigma}: Q \rightarrow Q$ by $\bar{\sigma}\left(\frac{r}{u}\right)=\frac{\sigma(r)}{\sigma(u)}$ (notice that $u \neq 0 \Longrightarrow \sigma(u) \neq 0$ by injectivity of σ). One verifies that this is a ring automorphism, for instance the calculation

$$
\begin{aligned}
\bar{\sigma}\left(\frac{r}{u}+\frac{s}{v}\right) & =\bar{\sigma}\left(\frac{r v+s u}{u v}\right)=\frac{\sigma(r v+s u)}{\sigma(u v)} \\
& =\frac{\sigma(r) \sigma(v)+\sigma(s) \sigma(u)}{\sigma(u) \sigma(v)}=\frac{\sigma(r)}{\sigma(u)}+\frac{\sigma(s)}{\sigma(v)} \\
& =\bar{\sigma}\left(\frac{r}{u}\right)+\bar{\sigma}\left(\frac{s}{v}\right)
\end{aligned}
$$

proves additivity.
For uniqueness, suppose $\varphi: Q \rightarrow Q$ is another automorphism satisfying $\varphi(r)=\sigma(r)$ for all $r \in R$. Since $\varphi(1)=1$ (this is an axiom of ring homomorphisms), by multiplicativity we can calculate for any $r \in R$

$$
1=\varphi(1)=\varphi\left(r \cdot \frac{1}{r}\right)=\varphi(r) \varphi\left(\frac{1}{r}\right)
$$

and from this we conclude that $\varphi\left(\frac{1}{r}\right)=\frac{1}{\varphi(r)}$. But then using multicativity again, along with the fact that $\varphi(a)=\sigma(a)$ for all $a \in R$, we calculate that for any element $\frac{r}{u} \in Q$,

$$
\varphi\left(\frac{r}{u}\right)=\varphi\left(r \cdot \frac{1}{u}\right)=\varphi(r) \varphi\left(\frac{1}{u}\right)=\varphi(r) \frac{1}{\varphi(u)}=\frac{\varphi(r)}{\varphi(u)}=\frac{\sigma(r)}{\sigma(u)}=\bar{\sigma}\left(\frac{r}{u}\right)
$$

and thus we conclude $\varphi=\bar{\sigma}$, proving uniqueness.

Section 3.3

3. (Problem 5)
(a) If A is an ideal of R and B is an ideal of S, prove $A \times B$ is an ideal of $R \times S$.

Solution: If $(a, b) \in A \times B$ and $(r, s) \in R \times S$, then $(a, b)(r, s)=(a r, b s)$ which is an element of $A \times B$ since ar $\in A$ and $b s \in B$ (since A and B are ideals). Similarly $(r, s)(a, b) \in A \times B$; checking it's an additive subgroup is equally straightforward.
(b) Prove every ideal of $R \times S$ is of the form $A \times B$ as in (a).

Solution: Let I be an ideal of $R \times S$; let $A=\{a \in R \mid(a, 0) \in I\}$ and $B=\{b \in S \mid(0, b) \in I\}$. One does the straightfoward verification that A and B are ideals, and we claim $I=A \times B$.
On one hand if $(a, b) \in A \times B$ then $a \in A$ implies $(a, 0) \in I$ and $b \in B$ implies $(0, b) \in I$, and closure under addition then implies $(a, b) \in I$. In the other direction, if $(a, b) \in I$, then multiplying by $(1,0)$ we deduce $(a, 0) \in I$ and hence deduce $a \in A$; similarly $b \in B$ so $(a, b) \in A \times B$, completing the proof of equality.
4. (Problem 9) Let $R=\mathbf{Z}[i]$ and in each of the following cases find the number of elements in R / A, and describe the cosets.
(a) $A=R i$,
(b) $A=R(1-i)$,

Solution: I will write (i) or $(1-i)$ instead of $R i$ or $R(1-i)$, etc. For part (a), just notice that i is a unit in R, so (i) $=R$ and then $R / A=0$ (i.e. there is one element of R / A).
For part (b), notice that because $(1-i)+A=0+A$, we deduce $i+A=1+A$, and therefore for any $a+b i \in R$ we have $(a+b i)+A=(a+b)+A$. Now notice that $2 \in A=(1-i)$ because $2=(1+i)(1-i)$. Using this, notice that if a and b have the same parity (i.e. they are either both even or both odd), then $a+b$ is even so for some $k \in \mathbf{Z}$ we have $a+b=2 k \in A$ (since $2 \in A$ and A is an ideal), and thus we deduce that $(a+b)+A=0+A$, and hence $(a+b i)+A=0+A$.
On the other hand, if a and b have different parities then $a+b$ is odd, so if $a+b=2 k+1$ for $k \in \mathbf{Z}$ then we see using similar logic to above that $(a+b)+A=1+A$, and hence $(a+b i)+A=1+A$.
Thus we see we have at most two cosets, $0+A$ and $1+A$, and we claim these are distinct; these are the same coset if and only if $1 \in A$, which is the case if and only if $R=A=(1-i)$, which is the case if and only if $1-i$ is a unit in R; but $1-i$ is not a unit in R because have the multiplicative norm map $N: R \rightarrow \mathbf{Z}$ defined previously, and using multiplicativity we see that if $1-i$ is a unit then we could conclude $N(1-i)= \pm 1$, but direct calculation shows $N(1-i)=2$.

