MATH 100B HW 2 Solutions Alex Mathers

Section 3.2

1. (Problem 19) Prove Q(\ﬁ) is the smallest subfield of R containing V2.

Solution: We must show that if F is a subfield of R containing v/2 then Q(v/2)  F; let F be such
a field. Prove that because F contains 1 (part of the definition of subfield) and is closed under
addition/additive inverses, F must contain all of Z. Then prove that because F must contain inverses
of nonzero elements, it follows that F contains all of Q. Now because F contains v/2 and is closed
under multiplication, it must contain elements of the form bv/2 where b € Q. Finally, since it is
closed under addition, we conclude F contains all elements of the form a + bv/2 where a,b eqQ,

i.e. F contains Q(+/2).

2. (Problem 25) Let R be an integral domain and Q 2 R be its field of quotients. Prove if 0 : R — R is
a (ring) automorphism, then there is a unique automorphism ¢ : Q — Q extending o, i.e. satisfying
o(r) = o(r) forall r € R.

Solution: We can define 6 : Q — Q by 5(&) = °") (notice that u # 0 = o(u) # 0 by

o(u)
injectivity of o). One verifies that this is a ring automorphism, for instance the calculation
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proves additivity.

For uniqueness, suppose @ : Q — Q is another automorphism satisfying ¢ (r) = o(r) for all
r € R. Since @(1) = 1 (this is an axiom of ring homomorphisms), by multiplicativity we can
calculate for any r € R

and from this we conclude that (p(%) = @ET)- But then using multicativity again, along with the

fact that @(a) = o(a) for all a € R, we calculate that for any element |- € Q,
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and thus we conclude ¢ = O, proving uniqueness.




MATH 100B HW 2 Solutions Alex Mathers

Section 3.3

3. (Problem 5)

(a)

(b)

If A is an ideal of R and B is an ideal of S, prove A x B is an ideal of R x S.

Solution: If (a,b) € A x B and (r,s) € R x S, then (a,b)(r,s) = (ar,bs) which is
an element of A x B since ar € A and bs € B (since A and B are ideals). Similarly
(r,ys)(a,b) € A x B; checking it’s an additive subgroup is equally straightforward.

Prove every ideal of R x S is of the form A X B as in (a).

Solution: Let Ibe anideal of RxS;letA ={a € R|(a,0) e [}andB={b e S| (0,b) € I}
One does the straightfoward verification that A and B are ideals, and we claim I = A x B.
On one hand if (a,b) € A x B then a € A implies (a,0) € [ and b € B implies (0,b) € I,
and closure under addition then implies (a,b) € I. In the other direction, if (a,b) € I, then
multiplying by (1,0) we deduce (a,0) € I and hence deduce a € A; similarly b € B so
(a,b) € A x B, completing the proof of equality.

4. (Problem 9) Let R = Z[i] and in each of the following cases find the number of elements in R/A, and
describe the cosets.

(a) A = Ri,
(b) A =R(1—1),

Solution: I will write (i) or (1 — 1) instead of Ri or R(1 — 1), etc. For part (a), just notice that i is
aunitin R, so (i) = R and then R/A = 0 (i.e. there is one element of R/A).

For part (b), notice that because (1 —1) + A =0+ A, we deduce i+ A = 1+ A, and therefore for
any a + bi € R we have (a + bi) + A = (a + b) + A. Now notice that 2 € A = (1 — 1) because
2 = (141)(1 —1i). Using this, notice that if a and b have the same parity (i.e. they are either both
even or both odd), then a + b is even so for some k € Z we have a +b = 2k € A (since 2 € A
and A is an ideal), and thus we deduce that (a +b)+A = 0+ A, and hence (a+bi)+A =0+ A.

On the other hand, if a and b have different parities then a+b is odd, so if a+b = 2k+1fork € Z
then we see using similar logic to above that (a4+b)+A = 1+ A, and hence (a+bi)+A = T4+ A.

Thus we see we have at most two cosets, O + A and 1 + A, and we claim these are distinct; these
are the same coset if and only if 1 € A, which is the case if and only if R = A = (1 — 1), which is
the case if and only if 1 —11is a unit in R; but T —1iis not a unit in R because have the multiplicative
norm map N : R — Z defined previously, and using multiplicativity we see that if 1 — 1 is a unit
then we could conclude N(1 — 1) = 41, but direct calculation shows N(1 —1i) = 2.




