Section 3.3

1. (Problem 20) Let R be a commutative ring.

(a)

(b) Prove that if R is finite, then every prime ideal of R is maximal.

Solution: Let P be a prime ideal of R. Then R/P is an integral domain, but R/P is finite because R is finite, so we can invoke the fact that finite integral domains are fields (Section 3.2 Theorem 3) to see that R/P is a field. Thus we conclude P is maximal.

(c) Is every prime ideal of **Z** maximal?

Solution: No, because $\langle 0 \rangle$ is a prime ideal of **Z** (for instance, because **Z** is an integral domain) but it is not maximal because we have proper inclusions $\langle 0 \rangle \subset \langle 2 \rangle \subset \mathbf{Z}$.

Section 3.4

2. (Problem 33) Prove the Third Isomorphism Theorem: If $A \subseteq B \subseteq R$, where A and B are ideals of R, then $B/A = \{b + A \mid b \in B\}$ is an ideal of R/A and $(R/A)/(B/A) \cong R/B$.

Solution: Consider the projection homomorphism $\varphi : R \to R/B$, i.e. $\varphi(r) = r + B$. We have $B = \ker \varphi$, and in particular $A \subseteq \ker \varphi$, so the universal property of quotients implies that there is an induced homomorphism $\overline{\varphi} : R/A \to R/B$ satisfying $\varphi = \overline{\varphi} \circ \pi$ (where $\pi : R \to R/A$ is the projection $\pi(r) = r + A$), explicitly given by $\overline{\varphi}(r + A) = r + B$. Notice $\overline{\varphi}$ is clearly surjective, and it is simple to check the kernel is exactly B/A (in particular, B/A is an ideal of R/A); now the first isomorphism theorem implies $(R/A)/(B/A) \cong R/B$.

3. (Problem 44(a)) Let A_1, A_2, \ldots, A_n be ideals of R and write $A = \bigcap_{i=1}^n A_i$. Prove that R/A is isomorphic to a subring of $R/A_1 \times \cdots \times R/A_n$.

Solution: Define $\varphi : R \to R/A_1 \times \cdots \times R/A_n$ by $\varphi(r) = (r+A_1, \dots, r+A_n)$. It is straightfoward to check this is a ring homomorphism, for instance for additivity we have if $r, r' \in R$

$$\begin{split} \phi(\mathbf{rr}') &= (\mathbf{rr}' + A_1, \dots, \mathbf{rr}' + A_n) \\ &= ((\mathbf{r} + A_1)(\mathbf{r}' + A_1), \dots, (\mathbf{r} + A_n)(\mathbf{r}' + A_n)) \\ &= (\mathbf{r} + A_1, \dots, \mathbf{r} + A_n) \cdot (\mathbf{r}' + A_1, \dots, \mathbf{r}' + A_n) \\ &= \phi(\mathbf{r}) \phi(\mathbf{r}'). \end{split}$$

Furthermore, we calculate the kernel as follows:

$$\ker \varphi = \{ r \in R \mid (r + A_1, ..., r + A_n) = (0 + A_1, ..., 0 + A_n) \}$$

= $\{ r \in R \mid r + A_i = 0 + A_i \text{ for } i = 1, ..., n \}$
= $\{ r \in R \mid r \in A_i \text{ for } i = 1, ..., n \}$
= $\bigcap_{i=1}^n A_i$
= A_i .

Section 4.1

- 4. (Problem 24)
 - (a) Show that $x^p x$ annihilates \mathbf{Z}_p .
 - (c) If $p \neq 2$ is prime, show $x^p x$ annihilates \mathbb{Z}_{2p} .

Solution:

- (a) If $a \in \mathbb{Z}$, write \bar{a} for its corresponding element of \mathbb{Z}_p . Recall if a is an integer then Fermat's little theorem tells us that $a^p \equiv a \pmod{p}$; thus $\bar{a}^p = \bar{a}^p = \bar{a}$ for all $\bar{a} \in \mathbb{Z}_p$. Subtracting we see $\bar{a}^p \bar{a} = 0$ for any $\bar{a} \in \mathbb{Z}_p$, and this shows $x^p x$ annihilates \mathbb{Z}_p .
- (c) Recall because 2 and p are coprime, there exists an isomorphism $\varphi : \mathbb{Z}_{2p} \to \mathbb{Z}_2 \times \mathbb{Z}_p$. Now using the fact that φ is an isomorphism we have for $z \in \mathbb{Z}_{2p}$

$$z^{p}-z=0 \iff \varphi(z^{p}-z)=0 \iff \varphi(z)^{p}-\varphi(z)=0,$$

so to show $x^p - x$ annihilates \mathbf{Z}_{2p} is the same as showing that $x^p - x$ annihilates $\mathbf{Z}_2 \times \mathbf{Z}_p$. But if $(a, b) \in \mathbf{Z}_2 \times \mathbf{Z}_p$ then $a^p - a = 0$ (the only possibilities are a = 0 and a = 1, so $a^p = a$ regardless), and we have $b^p - b = 0$ by part (a), so we have

$$(a, b)^{p} - (a, b) = (a^{p}, b^{p}) - (a, b) = (a^{p} - a, b^{p} - b) = (0, 0),$$

which shows $x^p - x$ annihilates (a, b). Since (a, b) was an arbitrary element of $\mathbf{Z}_2 \times \mathbf{Z}_p$ this proves $x^p - x$ annihilates $\mathbf{Z}_2 \times \mathbf{Z}_p$ and we are done.

5. (Problem 26) Show that $\sqrt[n]{m}$ is not rational unless $m = k^n$ for some integer k (where n and m are integers and n is positive).

Solution: Suppose $q = \sqrt[n]{m}$ is rational; then q is a root of the polynomial $x^n - m$. If we write q = a/b where a and b are coprime integers, then we can use the Rational Root Theorem to deduce that a divides the constant term of $x^n - m$ and b divides the leading coefficient. But the leading coefficient of $x^n - m$ is 1, so b | 1, or in other words $b = \pm 1$, and thus $q = \pm a$, which is an integer, so taking $k = q \in \mathbb{Z}$ we have $m = k^n$ as desired.