
MATH 100B HW 3 Solutions Alex Mathers

Section 3.3

1. (Problem 20) Let R be a commutative ring.

(a)

(b) Prove that if R is finite, then every prime ideal of R is maximal.

Solution: Let P be a prime ideal of R. Then R/P is an integral domain, but R/P is finite
because R is finite, so we can invoke the fact that finite integral domains are fields (Section 3.2
Theorem 3) to see that R/P is a field. Thus we conclude P is maximal.

(c) Is every prime ideal of Z maximal?

Solution: No, because 〈0〉 is a prime ideal of Z (for instance, because Z is an integral domain)
but it is not maximal because we have proper inclusions 〈0〉⊂ 〈2〉⊂Z.
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2. (Problem 33) Prove the Third Isomorphism Theorem: IfA⊆B⊆R, whereA and B are ideals of R, then
B/A = {b+A | b ∈ B} is an ideal of R/A and (R/A)/(B/A) ∼= R/B.

Solution: Consider the projection homomorphism ϕ : R → R/B, i.e. ϕ(r) = r + B. We have
B = kerϕ, and in particular A⊆ kerϕ, so the universal property of quotients implies that there is
an induced homomorphism ϕ : R/A → R/B satisfying ϕ = ϕ ◦ π (where π : R → R/A is the
projection π(r) = r + A), explicitly given by ϕ(r + A) = r + B. Notice ϕ is clearly surjective,
and it is simple to check the kernel is exactly B/A (in particular, B/A is an ideal of R/A); now the
first isomorphism theorem implies (R/A)/(B/A) ∼= R/B.

3. (Problem 44(a)) Let A1, A2, . . . , An be ideals of R and write A =
⋂n

i=1Ai. Prove that R/A is isomor-
phic to a subring of R/A1 × · · · × R/An.

Solution: Defineϕ : R→ R/A1×· · ·×R/An byϕ(r) = (r+A1, . . . , r+An). It is straightfoward
to check this is a ring homomorphism, for instance for additivity we have if r, r ′ ∈ R

ϕ(rr ′) = (rr ′ +A1, . . . , rr
′ +An)

= ((r+A1)(r
′ +A1), . . . , (r+An)(r

′ +An))

= (r+A1, . . . , r+An)·(r ′ +A1, . . . , r
′ +An)

= ϕ(r)ϕ(r ′).

Furthermore, we calculate the kernel as follows:

kerϕ =
{
r ∈ R | (r+A1, . . . , r+An) = (0+A1, . . . , 0+An)

}
=
{
r ∈ R | r+Ai = 0+Ai for i = 1, . . . , n

}
=
{
r ∈ R | r ∈ Ai for i = 1, . . . , n

}
=

n⋂
i=1

Ai

= A.
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4. (Problem 24)

(a) Show that xp − x annihilates Zp.
(c) If p 6= 2 is prime, show xp − x annihilates Z2p.

Solution:

(a) If a ∈ Z, write a for its corresponding element of Zp. Recall if a is an integer then Fermat’s
little theorem tells us that ap ≡ a (mod p); thus ap = ap = a for all a ∈ Zp. Subtracting
we see ap − a = 0 for any a ∈ Zp, and this shows xp − x annihilates Zp.

(c) Recall because 2 and p are coprime, there exists an isomorphism ϕ : Z2p → Z2 ×Zp. Now
using the fact that ϕ is an isomorphism we have for z ∈ Z2p

zp − z = 0 ⇐⇒ ϕ(zp − z) = 0 ⇐⇒ ϕ(z)p −ϕ(z) = 0,

so to show xp − x annihilates Z2p is the same as showing that xp − x annihilates Z2 × Zp.
But if (a, b) ∈ Z2 × Zp then ap − a = 0 (the only possibilities are a = 0 and a = 1, so
ap = a regardless), and we have bp − b = 0 by part (a), so we have

(a, b)p − (a, b) = (ap, bp) − (a, b) = (ap − a, bp − b) = (0, 0),

which shows xp − x annihilates (a, b). Since (a, b) was an arbitrary element of Z2 × Zp

this proves xp − x annihilates Z2 × Zp and we are done.

5. (Problem 26) Show that n
√
m is not rational unless m = kn for some integer k (where n and m are

integers and n is positive).

Solution: Suppose q = n
√
m is rational; then q is a root of the polynomial xn −m. If we write

q = a/b where a and b are coprime integers, then we can use the Rational Root Theorem to
deduce that a divides the constant term of xn −m and b divides the leading coefficient. But the
leading coefficient of xn −m is 1, so b | 1, or in other words b = ±1, and thus q = ±a, which is
an integer, so taking k = q ∈ Z we havem = kn as desired.


