Section 3.3

1. (Problem 20) Let R be a commutative ring.
(a)
(b) Prove that if R is finite, then every prime ideal of R is maximal.

Solution: Let P be a prime ideal of R. Then R / P is an integral domain, but R / P is finite because R is finite, so we can invoke the fact that finite integral domains are fields (Section 3.2 Theorem 3) to see that R / P is a field. Thus we conclude P is maximal.
(c) Is every prime ideal of \mathbf{Z} maximal?

Solution: No, because $\langle 0\rangle$ is a prime ideal of \mathbf{Z} (for instance, because \mathbf{Z} is an integral domain) but it is not maximal because we have proper inclusions $\langle 0\rangle \subset\langle 2\rangle \subset \mathbf{Z}$.

Section 3.4

2. (Problem 33) Prove the Third Isomorphism Theorem: If $A \subseteq B \subseteq R$, where A and B are ideals of R, then $B / A=\{b+A \mid b \in B\}$ is an ideal of R / A and $(R / A) /(B / A) \cong R / B$.

Solution: Consider the projection homomorphism $\varphi: R \rightarrow R / B$, i.e. $\varphi(r)=r+B$. We have $B=\operatorname{ker} \varphi$, and in particular $A \subseteq \operatorname{ker} \varphi$, so the universal property of quotients implies that there is an induced homomorphism $\bar{\varphi}: R / A \rightarrow R / B$ satisfying $\varphi=\bar{\varphi} \circ \pi$ (where $\pi: R \rightarrow R / A$ is the projection $\pi(r)=r+A$), explicitly given by $\bar{\varphi}(r+A)=r+B$. Notice $\bar{\varphi}$ is clearly surjective, and it is simple to check the kernel is exactly B / A (in particular, B / A is an ideal of R / A); now the first isomorphism theorem implies $(R / A) /(B / A) \cong R / B$.
3. (Problem 44(a)) Let $A_{1}, A_{2}, \ldots, A_{n}$ be ideals of R and write $A=\bigcap_{i=1}^{n} A_{i}$. Prove that R / A is isomorphic to a subring of $R / A_{1} \times \cdots \times R / A_{n}$.

Solution: Define $\varphi: R \rightarrow R / A_{1} \times \cdots \times R / A_{n}$ by $\varphi(r)=\left(r+A_{1}, \ldots, r+A_{n}\right)$. It is straightfoward to check this is a ring homomorphism, for instance for additivity we have if $r, r^{\prime} \in R$

$$
\begin{aligned}
\varphi\left(\mathrm{rr}^{\prime}\right) & =\left(r r^{\prime}+A_{1}, \ldots, \mathrm{rr}^{\prime}+A_{n}\right) \\
& =\left(\left(r+A_{1}\right)\left(\mathrm{r}^{\prime}+A_{1}\right), \ldots,\left(r+A_{n}\right)\left(r^{\prime}+A_{n}\right)\right) \\
& =\left(r+A_{1}, \ldots, r+A_{n}\right) \cdot\left(r^{\prime}+A_{1}, \ldots, r^{\prime}+A_{n}\right) \\
& =\varphi(r) \varphi\left(r^{\prime}\right) .
\end{aligned}
$$

Furthermore, we calculate the kernel as follows:

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{r \in R \mid\left(r+A_{1}, \ldots, r+A_{n}\right)=\left(0+A_{1}, \ldots, 0+A_{n}\right)\right\} \\
& =\left\{r \in R \mid r+A_{i}=0+A_{i} \text { for } i=1, \ldots, n\right\} \\
& =\left\{r \in R \mid r \in A_{i} \text { for } i=1, \ldots, n\right\} \\
& =\bigcap_{i=1}^{n} A_{i} \\
& =A .
\end{aligned}
$$

Section 4.1

4. (Problem 24)
(a) Show that $x^{p}-x$ annihilates \mathbf{Z}_{p}.
(c) If $p \neq 2$ is prime, show $x^{p}-x$ annihilates $\mathbf{Z}_{2 p}$.

Solution:

(a) If $a \in \mathbf{Z}$, write \bar{a} for its corresponding element of \mathbf{Z}_{p}. Recall if a is an integer then Fermat's little theorem tells us that $a^{p} \equiv a(\bmod p)$; thus $\bar{a}^{p}=\overline{a^{p}}=\bar{a}$ for all $\bar{a} \in \mathbf{Z}_{p}$. Subtracting we see $\overline{\mathrm{a}}^{\mathfrak{p}}-\overline{\mathrm{a}}=0$ for any $\overline{\mathrm{a}} \in \mathbf{Z}_{\mathrm{p}}$, and this shows $x^{p}-x$ annihilates \mathbf{Z}_{p}.
(c) Recall because 2 and p are coprime, there exists an isomorphism $\varphi: \mathbf{Z}_{2 p} \rightarrow \mathbf{Z}_{2} \times \mathbf{Z}_{p}$. Now using the fact that φ is an isomorphism we have for $z \in \mathbf{Z}_{2 p}$

$$
z^{p}-z=0 \Longleftrightarrow \varphi\left(z^{p}-z\right)=0 \Longleftrightarrow \varphi(z)^{p}-\varphi(z)=0
$$

so to show $x^{p}-x$ annihilates $\mathbf{Z}_{2 p}$ is the same as showing that $x^{p}-x$ annihilates $\mathbf{Z}_{2} \times \mathbf{Z}_{p}$. But if $(a, b) \in \mathbf{Z}_{2} \times \mathbf{Z}_{p}$ then $a^{p}-a=0$ (the only possibilities are $a=0$ and $a=1$, so $a^{p}=a$ regardless), and we have $b^{p}-b=0$ by part (a), so we have

$$
(a, b)^{p}-(a, b)=\left(a^{p}, b^{p}\right)-(a, b)=\left(a^{p}-a, b^{p}-b\right)=(0,0)
$$

which shows $x^{p}-x$ annihilates (a, b). Since (a, b) was an arbitrary element of $\mathbf{Z}_{2} \times \mathbf{Z}_{p}$ this proves $\chi^{p}-x$ annihilates $\mathbf{Z}_{2} \times \mathbf{Z}_{p}$ and we are done.
5. (Problem 26) Show that $\sqrt[n]{m}$ is not rational unless $m=k^{n}$ for some integer k (where n and m are integers and n is positive).

Solution: Suppose $q=\sqrt[n]{m}$ is rational; then q is a root of the polynomial $x^{n}-m$. If we write $\mathrm{q}=\mathrm{a} / \mathrm{b}$ where a and b are coprime integers, then we can use the Rational Root Theorem to deduce that a divides the constant term of $x^{n}-m$ and b divides the leading coefficient. But the leading coefficient of $x^{n}-m$ is 1 , so $b \mid 1$, or in other words $b= \pm 1$, and thus $q= \pm a$, which is an integer, so taking $k=q \in \mathbf{Z}$ we have $m=k^{n}$ as desired.

