Section 4.2

1. (Problem 22b) Show $f(x)=4 x^{5}+28 x^{4}+7 x^{3}-28 x^{2}+14$ is irreducible over $\mathbf{Q}[x]$.

Solution: Notice that $f(x) \in \mathbf{Z}[x]$. Furthermore notice 7 divides every coefficient except the leading term, and that 7^{2} does not divide the constant term. Thus we can apply Eisenstein's criterion with $p=7$ to deduce that $f(x)$ is irreducible in $\mathbf{Q}[x]$.
2. (Problem 43c) If $\sigma: F[x] \rightarrow F[x]$ is a ring automorphism that fixes F, show there exist $a \in F \backslash\{0\}$ and $b \in F$ such that $\sigma(f)=f(a x+b)$ for all $f \in F[x]$.

Solution: The key point is that an automorphism of $F[x]$ which fixes F is determined by the image of x. To see what we mean, let $f \in F[x]$, say $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Using the fact that σ is a ring homomorphism, and that $\sigma\left(a_{i}\right)=a_{i}$ for all i (because σ fixes F), we calculate

$$
\begin{aligned}
\sigma(f) & =\sigma\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \\
& =\sigma\left(a_{0}\right)+\sigma\left(a_{1}\right) \sigma(x)+\cdots+\sigma\left(a_{n}\right) \sigma(x)^{n} \\
& =a_{0}+a_{1} \sigma(x)+\cdots+a_{n} \sigma(x)^{n} \\
& =f(\sigma(x)) .
\end{aligned}
$$

Because this holds for any $f \in F[x]$, to complete the problem it suffices to show that there exist $a, b \in F, a \neq 0$, such that $\sigma(x)=a x+b$, or in other words it suffices to show that $\operatorname{deg}(\sigma(x))=1$. To see this, let $p(x)=\sigma(x)$ and let $q(x)=\sigma^{-1}(x)$. Then we calculate using the result of the calculation above (with f replaced by q)

$$
x=\sigma\left(\sigma^{-1}(x)\right)=\sigma(q(x))=q(\sigma(x))=q(p(x))
$$

Now we claim that $\operatorname{deg}(q(p(x)))=\operatorname{deg}(q) \operatorname{deg}(p)$; this will imply that $\operatorname{deg}(q) \operatorname{deg}(p)=1$, which lets us conclude $\operatorname{deg}(q)=\operatorname{deg}(p)=1$, which completes the proof because we were supposed to show that $\operatorname{deg}(\sigma(x))=1$.
To prove the claim, let $m=\operatorname{deg}(q)$ and $n=\operatorname{deg}(p)$, so we can write $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $q(x)=\sum_{j=0}^{m} b_{j} x^{i}$ where $a_{n}, b_{m} \neq 0$. Then using the multinomial theorem we have

$$
\begin{aligned}
q(p(x)) & =\sum_{j=0}^{m} b_{j}(p(x))^{j}=\sum_{j=0}^{m} b_{j}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{j} \\
& =\sum_{j=0}^{m} b_{j}\left(\sum_{k_{0}+\cdots+k_{n}=j}\binom{j}{k_{0}, \ldots, k_{n}} \prod_{i=0}^{n}\left(a_{i} x^{i}\right)^{k_{i}}\right)
\end{aligned}
$$

By inspection we see the largest power of x occuring in this expression is $x^{n m}$, and the coefficient is $a_{n}^{m} b_{m} \neq 0$, which shows $\operatorname{deg}(q(p(x)))=n m=\operatorname{deg}(q) \operatorname{deg}(p)$.

Section 4.3

3. (Problem 1b) In each case find a monic polynomial h in $F[x]$ such that $I=\langle h\rangle$, where

$$
I=\{f \in F[x] \mid \text { the sum of the coefficients of } f \text { is zero }\}
$$

Solution: We know there exists some monic polynomial h such that $I=\langle h\rangle$. Notice that $h \neq 0$ because $I \neq\{0\}$ (for instance $x-1 \in I$), and also notice that h cannot be a constant because I does not contain any nonzero constant polynomials (this easily follows from the definition of I). Thus $\operatorname{deg}(h) \geqslant 1$. Now because $x-1 \in I=\langle h\rangle$, we can write $x-1=h(x) q(x)$ for some $q \in F[x]$. Then we see $\operatorname{deg}(x-1)=\operatorname{deg}(h)+\operatorname{deg}(q)$, so because $\operatorname{deg}(x-1)=1$ and $\operatorname{deg}(h) \geqslant 1$ we conclude $\operatorname{deg}(h)=1$ and $\operatorname{deg}(q)=0$. But because $x-1$ and h are both monic we conclude that $q=1$, and thus $h(x)=x-1$, so $I=\langle x-1\rangle$.
4. (Problem 29) Let F be a field and $h=p q$ in $F[x]$, all polynomials monic. If p and q are relatively prime in $F[x]$, show that $F[x] /\langle h\rangle \cong F[x] /\langle q\rangle \times F[x] /\langle q\rangle$.

Solution: Because p and q are relatively prime, we have $\operatorname{lcm}(p, q)=p q=h$ as well as $\operatorname{gcd}(p, q)=1$. Then using Problem 25 we see that

$$
\langle\mathrm{p}\rangle \cap\langle\mathrm{q}\rangle=\langle\operatorname{lcm}(\mathrm{p}, \mathrm{q})\rangle=\langle\mathrm{h}\rangle \quad \text { and } \quad\langle\mathrm{p}\rangle+\langle\mathrm{q}\rangle=\langle\operatorname{gcd}(\mathrm{p}, \mathrm{q})\rangle=\langle 1\rangle=\mathrm{F}[\mathrm{x}] .
$$

The latter equality shows we can invoke the Chinese Remainder Theorem, and doing so we find

$$
\mathrm{F}[\mathrm{x}] /\langle\mathrm{h}\rangle=\mathrm{F}[\mathrm{x}] /(\langle\mathrm{p}\rangle \cap\langle\mathrm{q}\rangle) \cong \mathrm{F}[\mathrm{x}] /\langle\mathrm{p}\rangle \times \mathrm{F}[\mathrm{x}] /\langle\mathrm{q}\rangle .
$$

