Section 4.2

1. (Problem 22b) Show $f(x) = 4x^5 + 28x^4 + 7x^3 - 28x^2 + 14$ is irreducible over Q[x].

Solution: Notice that $f(x) \in \mathbb{Z}[x]$. Furthermore notice 7 divides every coefficient except the leading term, and that 7² does not divide the constant term. Thus we can apply Eisenstein's criterion with p = 7 to deduce that f(x) is irreducible in $\mathbb{Q}[x]$.

2. (Problem 43c) If $\sigma : F[x] \to F[x]$ is a ring automorphism that fixes F, show there exist $a \in F \setminus \{0\}$ and $b \in F$ such that $\sigma(f) = f(ax + b)$ for all $f \in F[x]$.

Solution: The key point is that an automorphism of F[x] which fixes F is determined by the image of x. To see what we mean, let $f \in F[x]$, say $f(x) = a_0 + a_1x + \cdots + a_nx^n$. Using the fact that σ is a ring homomorphism, and that $\sigma(a_i) = a_i$ for all i (because σ fixes F), we calculate

$$\sigma(f) = \sigma(a_0 + a_1x + \dots + a_nx^n)$$

= $\sigma(a_0) + \sigma(a_1)\sigma(x) + \dots + \sigma(a_n)\sigma(x)^n$
= $a_0 + a_1\sigma(x) + \dots + a_n\sigma(x)^n$
= $f(\sigma(x))$.

Because this holds for any $f \in F[x]$, to complete the problem it suffices to show that there exist $a, b \in F, a \neq 0$, such that $\sigma(x) = ax + b$, or in other words it suffices to show that $deg(\sigma(x)) = 1$. To see this, let $p(x) = \sigma(x)$ and let $q(x) = \sigma^{-1}(x)$. Then we calculate using the result of the calculation above (with f replaced by q)

$$\mathbf{x} = \sigma(\sigma^{-1}(\mathbf{x})) = \sigma(q(\mathbf{x})) = q(\sigma(\mathbf{x})) = q(\mathbf{p}(\mathbf{x})).$$

Now we claim that $\deg(q(p(x))) = \deg(q) \deg(p)$; this will imply that $\deg(q) \deg(p) = 1$, which lets us conclude $\deg(q) = \deg(p) = 1$, which completes the proof because we were supposed to show that $\deg(\sigma(x)) = 1$.

To prove the claim, let m = deg(q) and n = deg(p), so we can write $p(x) = \sum_{i=0}^{n} a_i x^i$ and $q(x) = \sum_{i=0}^{m} b_j x^i$ where $a_n, b_m \neq 0$. Then using the multinomial theorem we have

$$q(p(x)) = \sum_{j=0}^{m} b_j(p(x))^j = \sum_{j=0}^{m} b_j \left(\sum_{i=0}^{n} a_i x^i\right)^j$$
$$= \sum_{j=0}^{m} b_j \left(\sum_{k_0 + \dots + k_n = j} {j \choose k_0, \dots, k_n} \prod_{i=0}^{n} (a_i x^i)^{k_i}\right).$$

By inspection we see the largest power of x occuring in this expression is x^{nm} , and the coefficient is $a_n^m b_m \neq 0$, which shows deg(q(p(x))) = nm = deg(q) deg(p).

Section 4.3

3. (Problem 1b) In each case find a monic polynomial h in F[x] such that I = $\langle h \rangle$, where

 $I = \{f \in F[x] \mid \text{the sum of the coefficients of } f \text{ is zero}\}.$

Solution: We know there exists some monic polynomial h such that $I = \langle h \rangle$. Notice that $h \neq 0$ because $I \neq \{0\}$ (for instance $x - 1 \in I$), and also notice that h cannot be a constant because I does not contain any nonzero constant polynomials (this easily follows from the definition of I). Thus $deg(h) \ge 1$. Now because $x - 1 \in I = \langle h \rangle$, we can write x - 1 = h(x)q(x) for some $q \in F[x]$. Then we see deg(x - 1) = deg(h) + deg(q), so because deg(x - 1) = 1 and $deg(h) \ge 1$ we conclude deg(h) = 1 and deg(q) = 0. But because x - 1 and h are both monic we conclude that q = 1, and thus h(x) = x - 1, so $I = \langle x - 1 \rangle$.

4. (Problem 29) Let F be a field and h = pq in F[x], all polynomials monic. If p and q are relatively prime in F[x], show that $F[x]/\langle h \rangle \cong F[x]/\langle q \rangle \times F[x]/\langle q \rangle$.

Solution: Because p and q are relatively prime, we have lcm(p,q) = pq = h as well as gcd(p,q) = 1. Then using Problem 25 we see that

 $\langle p \rangle \cap \langle q \rangle = \langle lcm(p,q) \rangle = \langle h \rangle$ and $\langle p \rangle + \langle q \rangle = \langle gcd(p,q) \rangle = \langle 1 \rangle = F[x].$

The latter equality shows we can invoke the Chinese Remainder Theorem, and doing so we find

 $F[x]/\langle h \rangle = F[x]/(\langle p \rangle \cap \langle q \rangle) \cong F[x]/\langle p \rangle \times F[x]/\langle q \rangle.$