## Section 5.1

1. (Problem 7) Find the units in $\mathbf{Z}[\sqrt{-5}]$.

Solution: Recall we have the "norm" function $N: \mathbf{Z}[\sqrt{-5}] \rightarrow \mathbf{Z}$ given by $N(a+b \sqrt{-5})=$ $a^{2}+5 b^{2}$ which is multiplicative, i.e. satisfies $N(x y)=N(x) N(y)$ for $x, y \in \mathbf{Z}[\sqrt{-5}]$ (this is easy to prove, just tedious). Furthermore, notice that $N(a+b \sqrt{-5})=(a+b \sqrt{-5})(a-b \sqrt{-5})$; from this we conclude if $N(a+b \sqrt{-5})=1$ then $a+b \sqrt{-5}$ is a unit with inverse $a-b \sqrt{-5}$. The converse is true as well: if $x$ is a unit in $\mathbf{Z}[i]$, then

$$
1=\mathrm{N}(1)=\mathrm{N}\left(x x^{-1}\right)=\mathrm{N}(\mathrm{x}) \mathrm{N}\left(\mathrm{x}^{-1}\right)
$$

which because $N(x)$ and $N\left(x^{-1}\right)$ are nonnegative integers (this is easy to see from the way $N$ is defined), we conclude $N(x)=N\left(x^{-1}\right)=1$.
Thus determining the units of $\mathbf{Z}[\sqrt{-5}]$ is the same as determining which elements $a+b \sqrt{-5}$ satisfy $a^{2}+5 b^{2}=1$. But if $b \neq 0$ then $a^{2}+5 b^{2} \geqslant 5$ so this is impossible, and we see any such element satisfies $b=0$. But then we have $a^{2}=1$ so $a= \pm 1$, and we deduce the units of $\mathbf{Z}[\sqrt{-5}]$ are exactly $\pm 1$.
2. (Problem 10a) Determine whether $p=11$ is irreducible in $\mathbf{Z}[i]$.

Solution: Just as in the previous solution, it is important to remember that we have the norm function $N: \mathbf{Z}[i] \rightarrow \mathbf{Z}$ given by $N(a+b i)=a^{2}+b^{2}$, which is again multiplicative, and by similar remarks for any $x \in \mathbf{Z}[i]$ we have $N(x)=1 \Longleftrightarrow x$ is a unit.
First we notice 11 is not a unit, for instance because $N(11)=121 \neq 1$. Suppose $11=x y$ for some $x, y \in \mathbf{Z}[i]$. Then using multiplicativity of the norm, we have

$$
11^{2}=\mathrm{N}(11)=\mathrm{N}(\mathrm{xy})=\mathrm{N}(\mathrm{x}) \mathrm{N}(\mathrm{y})
$$

so because $N(x), N(y) \geqslant 0$ are integers we see by prime factorization in $\mathbf{Z}$ that the only possibilities are $N(x)=121$ and $N(y)=1$, or $N(x)=1$ and $N(y)=121$, or $N(x)=11$ and $N(y)=11$. If the last possibility occurs and we write $x=a+b i$ for $a, b \in \mathbf{Z}$, then we have $11=\mathrm{N}(\mathrm{x})=\mathrm{a}^{2}+\mathrm{b}^{2}$, and we claim this is not possible.
To see this, notice that if $a$ is any integer, then $a^{2}$ is equivalent to either 0 or 1 modulo 4 (you can check this by cases on the value of a modulo 4), and the same applies to $b$. But then $a^{2}+b^{2}$ can only be 0,1 , or 2 modulo 4 (again, check this by cases on the possible combination of values of $a^{2}$ and $b^{2}$ modulo 4). Thus we can never have $a^{2}+b^{2} \equiv 3 \bmod 4$ for any $a, b \in \mathbf{Z}$, and in particular we can never have $a^{2}+b^{2}=11$.

Thus we conclude we either have $N(x)=121$ and $N(y)=1$ or $N(x)=1$ and $N(y)=121$. In the former case we deduce $x$ is a unit, and in the latter case we deduce $y$ is a unit, so this proves 11 is irreducible in $\mathbf{Z}[i]$.

## Section 5.2

3. (Problem 1) Is every subring of a PID again a PID?

Solution: No; a simple counterexample is given by $\mathbf{Z}[x] \subset \mathbf{Q}[x]$.
Here is a more general method which can sometimes be useful with coming up with counterexamples to questions of the form "is a subring of a blah again a blah" (if you suspect that the claim is false): first, ask yourself if fields are blah. In our case, fields are PID's (fields are integral domains, and they have two ideals, $\langle 0\rangle$ and $\langle 1\rangle$, which are both principal), so we can proceed.

Next, find (if possible) an example of an integral domain which is not a blah. In our case, we can take $R=\mathbb{Z}[x]$ or $R=F[x, y]$ for a field $F$. Then recall that we have the field of fractions $Q(R)$ of $R$, which is a field, hence a PID. But $R$ is a subring of $Q(R)$, so as long as $R$ is chosen to not be a PID then $R \subset Q(R)$ gives us a subring of a PID which is not a PID.
4. (Problem 8b) If $I \neq 0$ is an ideal of $\mathbf{Z}_{(p)}$, show that $I=\left\langle p^{k}\right\rangle$ where $k \geqslant 0$ is the smallest integer such that $p^{k} \in A$.

Solution: First we need to make sure such an integer $k$ exists; since $I \neq 0$, we can take some nonzero $x \in I$; since $x \in \mathbf{Z}_{(p)}$ we can write $x=a / b$ where $a, b \in \mathbf{Z}$ and $p \nmid b$. By prime factorization of integers we can write $a=p^{r} c$ where $r \geqslant 0$ and $p \nmid c$. Then $x=p^{k}(c / b)$. But from part (a), since $p \nmid b$ and $p \nmid c$ we see that $c / b$ is a unit in $\mathbf{Z}_{(p)}$ with inverse $b / c$. Since $x \in I$ we have that $p^{r}=x(b / c) \in I$. The result of this is that we know there exists some $p^{r} \in I$, and then defining $k$ to be the smallest such value of $r$ is justified.
Now we want to prove $I=\left\langle p^{k}\right\rangle$. The inclusion $\left\langle p^{k}\right\rangle$ is immediate since $p^{k} \in I$ by the way we chose $k$. On the other hand, clearly $0 \in\left\langle p^{k}\right\rangle$, so take some $x \in I \backslash\{0\}$. By the exact argument we did above, we can write $x=p^{r}(c / b)$ where $p \nmid b$ and $p \nmid c$, and we can conclude in the same way that $p^{r} \in I$. But then we know by our choice of $k$ that we must have $k \leqslant r$ (remember $k$ was chosen to be minimal), and then $r-k \geqslant 0$ so $p^{r-k} \in \mathbf{Z}_{(p)}$ and thus we have

$$
x=p^{r} c / b=p^{k}\left(p^{r-k} c / b\right) \in\left\langle p^{k}\right\rangle
$$

which proves the other inclusion.

