Section 6.1

1. (Problem 31a) A linear map $\varphi: \mathrm{V} \rightarrow \mathrm{W}$ between vector spaces over F is a map such that $\varphi\left(v+v^{\prime}\right)=$ $\varphi(v)+\varphi\left(v^{\prime}\right)$ and $\varphi(a v)=a \varphi(v)$ for $a \in \mathrm{~F}$ and $v, v^{\prime} \in \mathrm{V}$. Prove $\operatorname{ker} \varphi$ and $\operatorname{Im} \varphi$ are subspaces of V and W respectively.

Solution: Of course $0 \in \operatorname{ker} \varphi$ because φ is an abelian group homomorphism. If $\nu, v^{\prime} \in \operatorname{ker} \varphi$ then

$$
\varphi\left(v-v^{\prime}\right)=\varphi(v)-\varphi\left(v^{\prime}\right)=0-0=0
$$

so $v-v^{\prime} \in \operatorname{ker} \varphi$ and $\operatorname{ker} \varphi$ is an additive subgroup. Finally if $v \in \operatorname{ker} \varphi$ and $a \in F$ then $\varphi(a v)=a \varphi(v)=a \cdot 0=0$ so $a v \in \operatorname{ker} \varphi$, and this concludes the proof that $\operatorname{ker} \varphi$ is a subspace.

Now let $w, w^{\prime} \in \varphi$ and $a \in F$. By definition we have $w=\varphi(v)$ and $w^{\prime}=\varphi\left(v^{\prime}\right)$ for some $v, v^{\prime} \in \mathrm{V}$. Then

$$
w+w^{\prime}=\varphi(v)+\varphi\left(v^{\prime}\right)=\varphi\left(v+v^{\prime}\right) \in \operatorname{Im} \varphi
$$

and $a w=a \varphi(v)=\varphi(a v) \in \operatorname{Im} \varphi$. Thus shows $\operatorname{Im} \varphi$ is a subspace.
2. (Problem 26) Let U and W be subspaces of a finite-dimensional vector space V over a field F.
(a)
(b) Suppose $U \cap W=\{0\}$. Prove $\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.

Solution: Choose bases $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ of U and W, respectively. We will prove $\left\{u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{m}\right\}$ is a basis of $U+W$: to see it spans, if $v \in U+W$, then by definition this means $v=u+w$ for some $u \in U$ and $w \in W$. Then we can write $u=a_{1} u_{1}+\cdots+a_{n} u_{n}$ for some $a_{i} \in F$, and $w=b_{1} w_{1}+\cdots+b_{m} w_{m}$ for some $b_{i} \in F$. But then

$$
v=u+w=a_{1} u_{1}+\cdots+a_{n} u_{n}+b_{1} w_{1}+\cdots+b_{m} w_{m}
$$

which shows $v \in \operatorname{span}\left\{u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{m}\right\}$. Now to show linear independence, suppose

$$
a_{1} u_{1}+\cdots+a_{n} u_{n}+b_{1} w_{1}+\cdots+b_{m} w_{m}=0
$$

Writing $x=a_{1} u_{1}+\cdots+a_{n} u_{n}$, we clearly have $x \in U$ (since each $u_{i} \in U$), but also $x=\left(-b_{1}\right) w_{1}+\cdots+\left(-b_{m}\right) w_{m}$, which shows us that $x \in W$. So $x \in U \cap W=\{0\}$, and we conclude $x=0$. But then $a_{1} u_{1}+\cdots+a_{n} u_{n}=0$, so by linear independence we conclude each a_{i} is zero; similarly we conclude each b_{i} is zero. This shows $\left\{a_{1}, \ldots, a_{n}, w_{1}, \ldots, w_{m}\right\}$ is linear independent, concluding the proof it is a basis for $\mathrm{U}+\mathrm{W}$.
(c) Prove in general that $\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)$.

Solution: Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for $\mathrm{U} \cap \mathrm{W}$ (so $\operatorname{dim}(\mathrm{U} \cap \mathrm{W})=\mathfrak{n}$). Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent subset of U , so by Theorem 6(2) we can extend it to a basis of U , say $\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{k}\right\}$. Similarly we can extend to a basis of W, say $\left\{v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{\ell}\right\}$. In particular $\operatorname{dim}(\mathrm{U})=\mathrm{n}+\mathrm{k}$ and $\operatorname{dim}(\mathrm{W})=\mathrm{n}+\ell$ in our notation.
We now claim that $\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{\ell}\right\}$ is a basis for $U+W$. If we can prove this then we will have

$$
\operatorname{dim}(U+W)=n+k+\ell=\operatorname{dim}(U \cap W)+\operatorname{dim}(U)+\operatorname{dim}(W)
$$

which gives the result by rearranging. To see that the set spans $U+W$, suppose $v=u+w \in$ $\mathrm{U}+\mathrm{W}$; because $v_{1}, \ldots, v_{n}, u_{1}, \ldots, \mathfrak{u}_{\mathrm{k}}$ span U , we can write

$$
u=a_{1} v_{1}+\cdots+a_{n} v_{n}+a_{n+1} u_{1}+\cdots+a_{n+k} u_{k}
$$

for some $a_{i} \in$ F. Similarly $w=b_{1} v_{1}+\cdots+b_{n} v_{n}+b_{n+1} w_{1}+\cdots+b_{n+\ell} w_{\ell}$ for some $b_{i} \in F$. Then because $v=u+w$ we have
$v=\left(a_{1}+b_{1}\right) v_{1}+\cdots+\left(a_{n}+b_{n}\right) v_{n}+a_{n+1} u_{1}+\cdots+a_{n+k} u_{k}+b_{n+1} w_{1}+\cdots+b_{n+\ell} w_{\ell}$
which shows $v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{\ell}$ span V. For linear independence, suppose

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}+b_{1} u_{1}+\cdots+b_{k} u_{k}+c_{1} w_{1}+\cdots+c_{\ell} w_{\ell}=0
$$

for $a_{i}, b_{i}, c_{i} \in F$. Let $x=-\left(c_{1} w_{1}+\cdots+c_{\ell} \mathcal{w}_{\ell}\right)$; clearly $x \in W$ because each $w_{i} \in W$. But on the other hand

$$
x=a_{1} v_{1}+\cdots+a_{n} v_{n}+b_{1} u_{1}+\cdots+b_{k} u_{k} \in U
$$

and therefore $x \in U \cap W$. But $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for $U \cap W$ so $x=a_{1}^{\prime} v_{1}+\cdots+a_{n}^{\prime} v_{n}$ for $a_{i}^{\prime} \in F$. Then we have the equation

$$
\left(a_{1}-a_{1}^{\prime}\right) v_{1}+\cdots+\left(a_{n}-a_{n}^{\prime}\right) v_{n}+b_{1} u_{1}+\cdots+b_{k} u_{k}=0
$$

By linear independence of $\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{k}\right\}$, we see all coefficients here are zero, in particular the b_{i} are zero. But then our original equation reduces to

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}+c_{1} w_{1}+\cdots+c_{\ell} w_{\ell}=0
$$

which by linear independence of $\left\{v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{\ell}\right\}$ implies all a_{i} and c_{i} are zero. This completes the proof of linear independence.

Section 6.2

3. (Problem 4 b) Show $\sqrt{2}$ is algebraic over $F=\mathbf{Q}(1+i)$ and find its minimal polynomial.

Solution: $\sqrt{2}$ is algebraic over F because it is a root of the polynomial $x^{2}-2 \in \mathrm{~F}[x]$. We claim this is the minimal polynomial (call it m) as well: we know that $m(x) \mid x^{2}-2$, $\operatorname{sodeg}(m)=1$ or 2 , and in the case $\operatorname{deg}(m)=2$ because both polynmomials are monic we can conclude $m(x)=x^{2}-2$. If $\operatorname{deg}(m)=1$ then this means $\sqrt{2} \in \mathbf{Q}(1+i)$; one can do a straightforward argument to show that $\{1,1+i, \sqrt{2}\}$ is linearly independent over \mathbf{Q} to show this is impossible. Here is an alternative approach: because $\mathbf{Q}(\sqrt{2}, 1+i)=\mathbf{Q}(1+i)(\sqrt{2})$, we have $\operatorname{deg}(m)=[\mathbf{Q}(\sqrt{2}, 1+i): \mathbf{Q}(1+i)]$. But similarly, the minimal polynomial occuring in the solution in part (a) has degree 2 which by a similar remark shows $[\mathbf{Q}(\sqrt{2}, 1+i): \mathbf{Q}(\sqrt{2})]=2$. But now we can consider the diagram

and Theorem 5 (sometimes called the Tower Law) lets us conclude $[\mathbf{Q}(\sqrt{2}, 1+i): \mathbf{Q}(1+i)]=2$, therefore $\operatorname{deg}(m)=2$ so $m(x)=x^{2}-2$. [Note: clearly this method is overkill for the problem at hand, but it is a useful method to know for future problems.]
4. (Problem 13a) Find $[E: F]$ where $E=\mathbf{Q}(\sqrt{3}+\sqrt{5})$ and $F=\mathbf{Q}(\sqrt{3})$.

Solution: Write $u=\sqrt{3}+\sqrt{5}$. Notice that

$$
\sqrt{3}=\frac{u^{3}-14 u}{4} \in \mathbf{Q}(u)=E
$$

so we actually do have $F \subseteq E$. Also notice that $E=F(u)$. Let $m \in F[x]$ be the minimal polynomial of u over F. By Theorem 4 we know that $[E: F]=\operatorname{deg}(m)$. Also notice that $(u-\sqrt{3})^{2}=5$, so expanding we see that u is a root of the polynomial $f(x)=x^{2}-2 \sqrt{3} x-2 \in F[x]$. By Theorem 3 we conclude that $m \mid f$ in $F[x]$. Therefore we either have $\operatorname{deg}(m)=1$ or $\operatorname{deg}(m)=2$. If $\operatorname{deg}(m)=1$ then $[\mathrm{E}: \mathrm{F}]=1$ which implies $\mathrm{E}=\mathrm{F}$ which implies $\sqrt{5} \in \mathbf{Q}(\sqrt{3})$. But by a very similar argument to Section 6.1 Problem 9 (a) we can conclude that $\{1, \sqrt{3}, \sqrt{5}\}$ is linearly independent over \mathbf{Q}, rendering $\sqrt{5} \in \mathbf{Q}(\sqrt{3})$ impossible. Thus we conclude $\operatorname{deg}(m)=2$ and hence $[E: F]=2$.

