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Section 6.1

1. (Problem 31a) A linear map ϕ : V → W between vector spaces over F is a map such that ϕ(v + v ′) =

ϕ(v) + ϕ(v ′) and ϕ(av) = aϕ(v) for a ∈ F and v, v ′ ∈ V . Prove kerϕ and Imϕ are subspaces of V
and W respectively.

Solution: Of course 0 ∈ kerϕ because ϕ is an abelian group homomorphism. If v, v ′ ∈ kerϕ
then

ϕ(v− v ′) = ϕ(v) −ϕ(v ′) = 0− 0 = 0,

so v − v ′ ∈ kerϕ and kerϕ is an additive subgroup. Finally if v ∈ kerϕ and a ∈ F then
ϕ(av) = aϕ(v) = a·0 = 0 so av ∈ kerϕ, and this concludes the proof that kerϕ is a subspace.

Now let w,w ′ ∈ ϕ and a ∈ F. By definition we have w = ϕ(v) and w ′ = ϕ(v ′) for some
v, v ′ ∈ V . Then

w+w ′ = ϕ(v) +ϕ(v ′) = ϕ(v+ v ′) ∈ Imϕ,

and aw = aϕ(v) = ϕ(av) ∈ Imϕ. Thus shows Imϕ is a subspace.

2. (Problem 26) Let U and W be subspaces of a finite-dimensional vector space V over a field F.

(a)

(b) Suppose U ∩W = {0}. Prove dim(U+W) = dim(U) + dim(W).

Solution: Choose bases {u1, . . . , un} and {w1, . . . , wm} of U and W, respectively. We will
prove {u1, . . . , un, w1, . . . , wm} is a basis of U + W: to see it spans, if v ∈ U + W, then
by definition this means v = u + w for some u ∈ U and w ∈ W. Then we can write
u = a1u1 + · · · + anun for some ai ∈ F, and w = b1w1 + · · · + bmwm for some bi ∈ F.
But then

v = u+w = a1u1 + · · ·+ anun + b1w1 + · · ·+ bmwm,

which shows v ∈ span{u1, . . . , un, w1, . . . , wm}. Now to show linear independence, suppose

a1u1 + · · ·+ anun + b1w1 + · · ·+ bmwm = 0.

Writing x = a1u1 + · · · + anun, we clearly have x ∈ U (since each ui ∈ U), but also
x = (−b1)w1 + · · ·+ (−bm)wm, which shows us that x ∈W. So x ∈ U∩W = {0}, and we
conclude x = 0. But then a1u1 + · · · + anun = 0, so by linear independence we conclude
each ai is zero; similarly we conclude each bi is zero. This shows {a1, . . . , an, w1, . . . , wm}

is linear independent, concluding the proof it is a basis for U+W.
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(c) Prove in general that dim(U+W) = dim(U) + dim(W) − dim(U ∩W).

Solution: Let {v1, . . . , vn} be a basis for U∩W (so dim(U∩W) = n). Then {v1, . . . , vn} is
a linearly independent subset of U, so by Theorem 6(2) we can extend it to a basis of U, say
{v1, . . . , vn, u1, . . . , uk}. Similarly we can extend to a basis of W, say {v1, . . . , vn, w1, . . . , w`}.
In particular dim(U) = n+ k and dim(W) = n+ ` in our notation.
We now claim that {v1, . . . , vn, u1, . . . , uk, w1, . . . , w`} is a basis for U+W. If we can prove
this then we will have

dim(U+W) = n+ k+ ` = dim(U ∩W) + dim(U) + dim(W)

which gives the result by rearranging. To see that the set spans U+W, suppose v = u+w ∈
U+W; because v1, . . . , vn, u1, . . . , uk span U, we can write

u = a1v1 + · · ·+ anvn + an+1u1 + · · ·+ an+kuk

for some ai ∈ F. Similarly w = b1v1 + · · · + bnvn + bn+1w1 + · · · + bn+`w` for some
bi ∈ F. Then because v = u+w we have

v = (a1+b1)v1+ · · ·+(an+bn)vn+an+1u1+ · · ·+an+kuk+bn+1w1+ · · ·+bn+`w`

which shows v1, . . . , vn, u1, . . . , uk, w1, . . . , w` span V . For linear independence, suppose

a1v1 + · · ·+ anvn + b1u1 + · · ·+ bkuk + c1w1 + · · ·+ c`w` = 0

for ai, bi, ci ∈ F. Let x = −(c1w1+ · · ·+ c`w`); clearly x ∈W because each wi ∈W. But
on the other hand

x = a1v1 + · · ·+ anvn + b1u1 + · · ·+ bkuk ∈ U,

and therefore x ∈ U ∩W. But {v1, . . . , vn} is a basis for U ∩W so x = a ′
1v1 + · · · + a ′

nvn
for a ′

i ∈ F. Then we have the equation

(a1 − a ′
1)v1 + · · ·+ (an − a ′

n)vn + b1u1 + · · ·+ bkuk = 0.

By linear independence of {v1, . . . , vn, u1, . . . , uk}, we see all coefficients here are zero, in
particular the bi are zero. But then our original equation reduces to

a1v1 + · · ·+ anvn + c1w1 + · · ·+ c`w` = 0

which by linear independence of {v1, . . . , vn, w1, . . . , w`} implies all ai and ci are zero. This
completes the proof of linear independence.
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Section 6.2

3. (Problem 4b) Show
√
2 is algebraic over F = Q(1+ i) and find its minimal polynomial.

Solution:
√
2 is algebraic over F because it is a root of the polynomial x2−2 ∈ F[x]. We claim this

is the minimal polynomial (call it m) as well: we know that m(x) |x2−2, so deg(m) = 1 or 2, and
in the case deg(m) = 2 because both polynmomials are monic we can conclude m(x) = x2 − 2.
If deg(m) = 1 then this means

√
2 ∈ Q(1 + i); one can do a straightforward argument to show

that {1, 1 + i,
√
2} is linearly independent over Q to show this is impossible. Here is an alternative

approach: because Q(
√
2, 1 + i) = Q(1 + i)(

√
2), we have deg(m) = [Q(

√
2, 1 + i) : Q(1 + i)].

But similarly, the minimal polynomial occuring in the solution in part (a) has degree 2 which by a
similar remark shows [Q(

√
2, 1+ i) : Q(

√
2)] = 2. But now we can consider the diagram

Q(
√
2, 1+ i)

Q(
√
2) Q(1+ i)

Q

2

2

2

and Theorem 5 (sometimes called the Tower Law) lets us conclude [Q(
√
2, 1+ i) : Q(1+ i)] = 2,

therefore deg(m) = 2 so m(x) = x2 − 2. [Note: clearly this method is overkill for the problem at
hand, but it is a useful method to know for future problems.]

4. (Problem 13a) Find [E : F] where E = Q(
√
3+
√
5) and F = Q(

√
3).

Solution: Write u =
√
3+
√
5. Notice that

√
3 =

u3 − 14u

4
∈ Q(u) = E

so we actually do have F⊆E. Also notice that E = F(u). Let m ∈ F[x] be the minimal polynomial
of u over F. By Theorem 4 we know that [E : F] = deg(m). Also notice that (u −

√
3)2 = 5, so

expanding we see that u is a root of the polynomial f(x) = x2−2
√
3x−2 ∈ F[x]. By Theorem 3 we

conclude that m | f in F[x]. Therefore we either have deg(m) = 1 or deg(m) = 2. If deg(m) = 1

then [E : F] = 1 which implies E = F which implies
√
5 ∈ Q(

√
3). But by a very similar

argument to Section 6.1 Problem 9(a) we can conclude that {1,
√
3,
√
5} is linearly independent

over Q, rendering
√
5 ∈ Q(

√
3) impossible. Thus we conclude deg(m) = 2 and hence [E : F] = 2.


