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Section 6.3

1. (Problem 2c) Find a splitting field E of f(x) = x4 − 6x2 − 7 over Q and compute [E : Q].

Solution: Notice f(x) = (x2 − 7)(x2+ 1). Thus the roots of f in C are ±i and ±
√
7, and we see a

splitting field for f over Q, given as a subfield of C, is E = Q(
√
7, i). Of course [Q(

√
7) : Q] = 2,

for instance the minimal polynomial of
√
7 is x2 − 7 (irreducible over Q by Eisenstein). Next we

will compute [E : Q(
√
7)], but notice that E = Q(

√
7, i) =

(
Q(
√
7)
)
(i), so we should just compute

the degree of the minimal polynomial of i over Q(
√
7). But this minimal polynomial must divide

x2 + 1, so the degree of the minimal polynomial is either 1 or 2, so [E : Q(
√
7)] is 1 or 2, but if the

degree is 1 then i ∈ Q(
√
7) which is impossible because i /∈ R. Thus we see [E : Q(

√
7)] = 2 and

then by the tower law we see [E : Q] = 4.

2. (Problem 11) Let E/L/F be fields and f ∈ F[x]. Prove if E is a splitting field for f over F then E is also a
splitting field for f over L.

Solution: This is an exercise in being careful about definitions; by definition, because E is a split-
ting field for f over F, we have a factorization f(x) = a(x− α1) · · · (x− αn) in E[x], where a ∈ F
and αi ∈ E, and an equality E = F(α1, . . . , αn).

We need to know the same holds when we replace F by L. Of course we still have f ∈ L[x] and we
have a ∈ L in the factorization above. The only thing to prove is E = L(α1, . . . , αn). of course
E = F(α1, . . . , αn)⊆L(α1, . . . , αn), and on the other hand, because αi ∈ E for each i and L⊆E
we find L(α1, . . . , αn)⊆E, which concludes the proof.
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3. (Problem 2) Construct a field of order 27 and find a primitive element.

Solution: We need to construct a field extension of F3 (where we recall Fp is just alternative
notation for Zp) of degree 3, so it is enough to find an irreducible polynomial f ∈ F3[x] of degree
3. But degree 3 polynomials over a field are irreducible as long as they have no roots, so we just
need some f with no roots, and one can easily check f(x) = x3 − x − 1 works. So we take
E = F3[x]/〈x3 − x− 1〉.
Now we need to find a primitive element, i.e. an element α ∈ E which generates E∗ as a multiplica-
tive group. Therefore we should have o(α) = |E∗| = 26. If we have any such α, then (α13)2 = 1

so α13 = ±1, so if we are to have o(α) = 26 then we should have α13 = −1. Conversely, if
α 6= ±1 and α13 = −1, then using the fact that 26 = 2·13 and o(alpha) | 26, one can deduce that
we must have o(α) = 26. So we need to find an element α ∈ E such that α 6= ±1 and α13 = −1.

In E = F3[x]/〈x3 − x − 1〉, write g = g + 〈x3 − x − 1〉 for the equivalence class of g ∈ F3[x].
Notice then that x3 = x+ 1. From this one can calculate (recalling throughout the calculation that
we are in characteristic 3)

x13 = x(x3)4 = x(x+ 1)4

= x(x4 + 4x3 + 6x2 + 4x+ 1)

= · · ·
= x3 + 2x = x3 − x

= 1.

So x is not the element we want! But it gets us close; notice from x13 = 1we deduce (−x)13 = −1,
so because −x 6= ±1 we see −x gives us a primitive element.

4. (Problem 8) Find [GF(pn) : GF(pm)] wherem |n.

Solution: Recall if V is a d-dimensional vector space over a field F, say with basis {v1, . . . , vd},
then there is an isomorphism Fd → V by sending (a1, . . . , an) 7→ a1v1 + · · ·+ advd. [If you are
not familiar with this fact, try to prove it yourself! Injectivity will correspond to linear independence
of v1, . . . , vd, and surjectivity will correspond to the fact that they span.]

In the case F is a finite field, we deduce that |V | = |F|d. Therefore, in the case V = GF(pn) and
F = GF(pm) wherem |n, we see that

pn = |GF(pn)| = |GF(pm)|d = (pm)d = pmd,

and therefore n = md, so [GF(pn) : GF(pm)] = d = n/m.


