Section 6.3

1. (Problem 2c) Find a splitting field E of $f(x)=x^{4}-6 x^{2}-7$ over \mathbf{Q} and compute $[E: \mathbf{Q}]$.

Solution: Notice $f(x)=\left(x^{2}-7\right)\left(x^{2}+1\right)$. Thus the roots of f in \mathbf{C} are $\pm i$ and $\pm \sqrt{7}$, and we see a splitting field for f over \mathbf{Q}, given as a subfield of \mathbf{C}, is $E=\mathbf{Q}(\sqrt{7}, i)$. Of course $[\mathbf{Q}(\sqrt{7}): \mathbf{Q}]=2$, for instance the minimal polynomial of $\sqrt{7}$ is $x^{2}-7$ (irreducible over \mathbf{Q} by Eisenstein). Next we will compute $[E: \mathbf{Q}(\sqrt{7})]$, but notice that $E=\mathbf{Q}(\sqrt{7}, \mathfrak{i})=(\mathbf{Q}(\sqrt{7}))(\mathfrak{i})$, so we should just compute the degree of the minimal polynomial of i over $\mathbf{Q}(\sqrt{7})$. But this minimal polynomial must divide $x^{2}+1$, so the degree of the minimal polynomial is either 1 or 2 , so $[E: \mathbf{Q}(\sqrt{7})]$ is 1 or 2 , but if the degree is 1 then $i \in \mathbf{Q}(\sqrt{7})$ which is impossible because $i \notin \mathbf{R}$. Thus we see $[E: \mathbf{Q}(\sqrt{7})]=2$ and then by the tower law we see $[\mathrm{E}: \mathbf{Q}]=4$.
2. (Problem 11) Let $E / L / F$ be fields and $f \in F[x]$. Prove if E is a splitting field for f over F then E is also a splitting field for f over L.

Solution: This is an exercise in being careful about definitions; by definition, because E is a splitting field for f over F, we have a factorization $f(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ in $E[x]$, where $a \in F$ and $\alpha_{i} \in E$, and an equality $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

We need to know the same holds when we replace F by L. Of course we still have $f \in L[x]$ and we have $a \in L$ in the factorization above. The only thing to prove is $E=L\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. of course $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subseteq L\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and on the other hand, because $\alpha_{i} \in E$ for each i and $L \subseteq E$ we find $L\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subseteq E$, which concludes the proof.
3. (Problem 2) Construct a field of order 27 and find a primitive element.

Solution: We need to construct a field extension of \mathbf{F}_{3} (where we recall \mathbf{F}_{p} is just alternative notation for \mathbf{Z}_{p}) of degree 3, so it is enough to find an irreducible polynomial $f \in \mathbf{F}_{3}[x]$ of degree 3. But degree 3 polynomials over a field are irreducible as long as they have no roots, so we just need some f with no roots, and one can easily check $f(x)=x^{3}-x-1$ works. So we take $E=\mathbf{F}_{3}[x] /\left\langle x^{3}-x-1\right\rangle$.
Now we need to find a primitive element, i.e. an element $\alpha \in E$ which generates E^{*} as a multiplicative group. Therefore we should have $o(\alpha)=\left|E^{*}\right|=26$. If we have any such α, then $\left(\alpha^{13}\right)^{2}=1$ so $\alpha^{13}= \pm 1$, so if we are to have $o(\alpha)=26$ then we should have $\alpha^{13}=-1$. Conversely, if $\alpha \neq \pm 1$ and $\alpha^{13}=-1$, then using the fact that $26=2 \cdot 13$ and o(alpha) $\mid 26$, one can deduce that we must have $o(\alpha)=26$. So we need to find an element $\alpha \in E$ such that $\alpha \neq \pm 1$ and $\alpha^{13}=-1$. In $E=\mathbf{F}_{3}[x] /\left\langle x^{3}-x-1\right\rangle$, write $\bar{g}=g+\left\langle x^{3}-x-1\right\rangle$ for the equivalence class of $g \in \mathbf{F}_{3}[x]$. Notice then that $\bar{\chi}^{3}=\bar{x}+1$. From this one can calculate (recalling throughout the calculation that we are in characteristic 3)

$$
\begin{aligned}
\bar{x}^{13} & =\bar{x}\left(\bar{x}^{3}\right)^{4}=\bar{x}(\bar{x}+1)^{4} \\
& =\bar{x}\left(\bar{x}^{4}+4 \bar{x}^{3}+6 \bar{x}^{2}+4 \bar{x}+1\right) \\
& =\cdots \\
& =\bar{x}^{3}+2 \bar{x}=\bar{x}^{3}-x \\
& =1
\end{aligned}
$$

So \bar{x} is not the element we want! But it gets us close; notice from $\bar{x}^{13}=1$ we deduce $(-\bar{x})^{13}=-1$, so because $-\bar{x} \neq \pm 1$ we see $-\bar{x}$ gives us a primitive element.
4. (Problem 8) Find $\left[G F\left(p^{n}\right): G F\left(p^{m}\right)\right]$ where $m \mid n$.

Solution: Recall if V is a d-dimensional vector space over a field F, say with basis $\left\{v_{1}, \ldots, v_{d}\right\}$, then there is an isomorphism $F^{d} \rightarrow V$ by sending $\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} v_{1}+\cdots+a_{d} v_{d}$. [If you are not familiar with this fact, try to prove it yourself! Injectivity will correspond to linear independence of $v_{1}, \ldots, v_{\mathrm{d}}$, and surjectivity will correspond to the fact that they span.]
In the case F is a finite field, we deduce that $|V|=|F|^{d}$. Therefore, in the case $V=\operatorname{GF}\left(p^{n}\right)$ and $F=\operatorname{GF}\left(p^{m}\right)$ where $m \mid n$, we see that

$$
\mathrm{p}^{\mathrm{n}}=\left|\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)\right|=\left|\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)\right|^{\mathrm{d}}=\left(\mathrm{p}^{\mathrm{m}}\right)^{\mathrm{d}}=\mathrm{p}^{\mathrm{md}}
$$

and therefore $n=m d$, so $\left[G F\left(p^{n}\right): G F\left(p^{m}\right)\right]=d=n / m$.

