HOMEWORK 3

DUE WEDNESDAY, OCTOBER 30, 2019 IN CLASS

Part I: FRom the textbook

Chapter I, Section 8: 4, 10, $1 \mathbf{1}$

Part II

1. Let d be a square free integer and set $K=\mathbb{Q}(\sqrt{d})$ and denote by D the discriminant of K.
(a) Show that 2 splits completely in K if and only if $D \equiv 1(\bmod 8)$.
(b) Show that 2 is inert in K if and only if $D \equiv 5(\bmod 8)$.
(c) Show that 2 ramifies completely in K if and only if $D \equiv 0,4(\bmod 8)$.
2. Let $S=\mathbb{Z}[\alpha]$, where $\alpha^{3}=\alpha+1$.
(a) Prove that

$$
23 S=(23, \alpha-10)^{2}(23, \alpha-3) .
$$

(b) Show that $(23, \alpha-10, \alpha-3)=S$.
(c) $(23, \alpha-10)$ and $(23, \alpha-3)$ are relatively prime ideals.
3. Let $\omega=\frac{-1+\sqrt{-3}}{2}$ one of the primitive third roots of unity. Set $K=\mathbb{Q}(\omega)$.
(a) Compute the $N_{K / \mathbb{Q}}(a+b \omega)$ where $a, b \in \mathbb{Q}$.
(b) Prove that $\mathcal{O}_{K}=\mathbb{Z}[\omega]$.

Hint: K is a quadratic extension of \mathbb{Q}.
(c) Show that \mathcal{O}_{K} is a PID.
(d) Show that $\alpha=1-\omega$ is prime in \mathcal{O}_{K} and that $3=u(1-\omega)^{2}$ for some unit $u \in \mathcal{O}_{K}^{\times}$.
4. Let $p>2$ be a prime number and $\zeta=\zeta_{p}=e^{\frac{2 \pi i}{p}}$ one of the primitive p th roots of unity. Set $K=\mathbb{Q}\left(\zeta_{p}\right)$. Note that $1, \zeta, \ldots, \zeta^{p-2}$ are algebraic integers and they form of a \mathbb{Q}-basis of K.
(a) Compute $\operatorname{Tr}_{K / \mathbb{Q}}\left(\zeta^{j}\right)$ and $\operatorname{Tr}_{K / \mathbb{Q}}\left(1-\zeta^{j}\right)$ for $0 \leq j \leq p-1$.

Hint: Use the minimal polynomial of ζ.
(b) Compute $\mathrm{N}_{K / \mathbb{Q}}(1-\zeta)$.

Hint: Consider $f(t-1)$ where f is the minimal polynomial of ζ.
(c) Show that $(1-\zeta) \mathcal{O}_{K} \cap \mathbb{Z}=p \mathbb{Z}$.

Hint: Use the previous part to show that $p=(1-\zeta)\left(1-\zeta^{2}\right) \ldots\left(1-\zeta^{p-1}\right)$.
(d) Show that $\operatorname{Tr}_{K / \mathbb{Q}}(y(1-\zeta)) \in p \mathbb{Z}$ for all $y \in \mathcal{O}_{K}$.
(e) Prove that $\mathcal{O}_{K}=\mathbb{Z}[\zeta]$.

Hint: Show that if $\alpha=a_{0}+a_{1} \zeta+\cdots+a_{p-2} \zeta^{p-2}$ with $a_{j} \in \mathbb{Q}$, then

$$
\operatorname{Tr}_{K / \mathbb{Q}}(\alpha(1-\zeta))=p a_{0} .
$$

(f) Compute the discriminant of K.

Hint: Use the proof of exercise 4, Part II, HW1.

