HOMEWORK 3

DUE WEDNESDAY, OCTOBER 30, 2019 IN CLASS

PART I: FROM THE TEXTBOOK

Chapter I, Section 8: 4, 10, 11

Part II

- **1.** Let d be a square free integer and set $K = \mathbb{Q}(\sqrt{d})$ and denote by D the discriminant of K.
 - (a) Show that 2 splits completely in K if and only if $D \equiv 1 \pmod{8}$.
 - (b) Show that 2 is inert in K if and only if $D \equiv 5 \pmod{8}$.
 - (c) Show that 2 ramifies completely in K if and only if $D \equiv 0, 4 \pmod{8}$.
- **2.** Let $S = \mathbb{Z}[\alpha]$, where $\alpha^3 = \alpha + 1$.
 - (a) Prove that

$$23S = (23, \alpha - 10)^2 (23, \alpha - 3).$$

- (b) Show that $(23, \alpha 10, \alpha 3) = S$.
- (c) $(23, \alpha 10)$ and $(23, \alpha 3)$ are relatively prime ideals.
- **3.** Let $\omega = \frac{-1+\sqrt{-3}}{2}$ one of the primitive third roots of unity. Set $K = \mathbb{Q}(\omega)$.
 - (a) Compute the $N_{K/\mathbb{Q}}(a+b\omega)$ where $a, b \in \mathbb{Q}$.
 - (b) Prove that $\mathcal{O}_K = \mathbb{Z}[\omega]$. *Hint:* K is a quadratic extension of \mathbb{Q} .
 - (c) Show that \mathcal{O}_K is a PID.
 - (d) Show that $\alpha = 1 \omega$ is prime in \mathcal{O}_K and that $3 = u(1 \omega)^2$ for some unit $u \in \mathcal{O}_K^{\times}$.
- 4. Let p > 2 be a prime number and $\zeta = \zeta_p = e^{\frac{2\pi i}{p}}$ one of the primitive *p*th roots of unity. Set $K = \mathbb{Q}(\zeta_p)$. Note that $1, \zeta, \ldots, \zeta^{p-2}$ are algebraic integers and they form of a \mathbb{Q} -basis of K.
 - (a) Compute $\operatorname{Tr}_{K/\mathbb{Q}}(\zeta^j)$ and $\operatorname{Tr}_{K/\mathbb{Q}}(1-\zeta^j)$ for $0 \leq j \leq p-1$. *Hint:* Use the minimal polynomial of ζ .
 - (b) Compute $N_{K/\mathbb{Q}}(1-\zeta)$. *Hint:* Consider f(t-1) where f is the minimal polynomial of ζ .
 - (c) Show that $(1 \zeta)\mathcal{O}_K \cap \mathbb{Z} = p\mathbb{Z}$. *Hint:* Use the previous part to show that $p = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{p-1})$.

- (d) Show that $\operatorname{Tr}_{K/\mathbb{Q}}(y(1-\zeta)) \in p\mathbb{Z}$ for all $y \in \mathcal{O}_K$.
- (e) Prove that $\mathcal{O}_K = \mathbb{Z}[\zeta]$. *Hint:* Show that if $\alpha = a_0 + a_1\zeta + \dots + a_{p-2}\zeta^{p-2}$ with $a_j \in \mathbb{Q}$, then $\operatorname{Trans}(\alpha(1-\zeta)) = ma_1$

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha(1-\zeta)) = pa_0.$$

(f) Compute the discriminant of K. Hint: Use the proof of exercise 4, Part II, HW1.