HOMEWORK 4

DUE WEDNESDAY, NOVEMBER 6, 2019 IN CLASS

Part I: FROM THE TEXTBOOK

Chapter I, Section 9: 2, 4

Part II

1. (10 points) Find a prime p and quadratic extensions K and L of \mathbb{Q} illustrating each of the following.
(a) p can be totally ramified in K and L without being totally ramified in $K L$.
(b) K and L can each contain unique primes lying over p while $K L$ does not.
(c) p can be inert in K and L without being inert in $K L$.
(d) The residue field extensions of $\mathbb{Z} / p \mathbb{Z}$ can be trivial for K and L without being trivial for $K L$.
2. (20 points) Let K and L be number fields, L a normal extension of K with Galois group G, and let P be a prime of K. By intermediate field we will mean an intermediate field different from K and L.
(a) Prove that if P is inert in L then G is cyclic.
(b) Suppose P is totally ramified in every intermediate field, but not totally ramified in L. Prove that no intermediate fields can exist, hence G is cyclic of prime order.
Hint: inertia field.
(c) Suppose every intermediate field contains a unique prime lying over P but L does not. Prove the same as in part (b).
Hint: decomposition field.
(d) Suppose P is unramified in every intermediate field, but ramified in L. Prove that G has a unique smallest nontrivial subgroup H, and that H is normal in G; use this to show that G has prime power order, H has prime order, and H is contained in the center of G.
(e) Suppose P splits completely in every intermediate field, but not in L. Prove the same as in part (d). Find an example of this over \mathbb{Q}.
(f) Suppose P is inert in every intermediate field but not inert in L. Prove that G is cyclic of prime power order.
Hint: Use (a), (c), (d) and something from group theory.
3. (20 points) Let $\zeta=\zeta_{m}(m \geq 3)$ be a primitive m th root of unity. (One may take $\zeta_{m}=e^{2 \pi i / m}$.) Set $\theta=\zeta+\zeta^{-1}$. Let $K=\mathbb{Q}(\theta)$ and $L=\mathbb{Q}(\zeta)$.
(a) Show that ζ is a root of a polynomial of degree 2 over $\mathbb{Q}(\theta)$.
(b) Show that $K=\mathbb{R} \cap L$ and that L has degree 2 over K.

Hint: $L \supset L \cap \mathbb{R} \supset K$.
(c) Show that K is the fixed field of the automorphism ? of L determined by $\sigma(\zeta)=\zeta^{-1}$. Hint: σ is just complex conjugation.
(d) Show that $\mathcal{O}_{K}=\mathbb{R} \cap \mathbb{Z}[\zeta]$.
(e) Let $n=\varphi(m) / 2$. Show that

$$
1, \zeta, \zeta^{-1}, \zeta^{2}, \zeta^{-2}, \ldots, \zeta^{n-1}, \zeta^{-(n-1)}, \zeta^{n}
$$

form an integral basis for $\mathbb{Z}[\zeta]$.
(f) Use part (e) to show that

$$
1, \zeta, \theta, \theta \zeta, \theta^{2}, \theta^{2} \zeta, \ldots, \theta^{n-1}, \theta^{n-1} \zeta
$$

is another integral basis for $\mathbb{Z}[\zeta]$.
Hint: Write these in terms of the other basis and look at the resulting matrix.
(g) Show that

$$
1, \theta, \theta^{2}, \ldots, \theta^{n-1}
$$

is an integral basis for \mathcal{O}_{K}. Conclude that $\mathcal{O}_{K}=\mathbb{Z}[\theta]$.
(h) [Extra credit] Suppose m is an odd prime p. Show that $\operatorname{disc}(K)= \pm p^{(p-3) / 2}$.

