# HOMEWORK 6 

DUE FRIDAY, NOVEMBER 22, 2019 IN CLASS

## Part I: FROM THE TEXTBOOK

## Chapter I, Section 12: 1, 3

## Part II

In what follows, a ring of rank $n$ is a commutative ring with unit that is also a free $\mathbb{Z}$-module of rank $n$.

1. Prove that a finite integral domain is a field.
2. Prove that (up to isomorphism) the only ring of rank 1 is $\mathbb{Z}$ itself.
3. Prove that an order in a number field of degree $n$ is a ring of rank $n$.
4. Let $S$ be ring of rank 2 , also called a quadratic ring.
(a) Prove that $S$ admits a $\mathbb{Z}$-basis of the form $1, \tau$.
(b) For any basis $1, \tau$ of $S$, specifying the ring structure on $S$ is equivalent to specifying $b, c \in \mathbb{Z}$ such that

$$
\tau^{2}=b \tau+c
$$

Prove that the quantity $D=b^{2}+4 c$ does not depend on the choice of $\tau$. The quantity $D$ is called the discriminant of $S$ and is denoted $\operatorname{disc}(S)$.
(c) Show that $S$ admits a basis $1, \tau$ such that

$$
\tau^{2}=c \text { or } \tau^{2}=\tau+c
$$

with $c \in \mathbb{Z}$.
(d) Conclude that the discriminant of $S$ is congruent to either 0 or 1 modulo 4 .
5. Prove that if $K$ is a quadratic number field, the discriminant of $K$ defined in lecture and the discriminant of $\mathcal{O}_{K}$ as a quadratic ring are the same.
6. Prove that isomorphism classes of quadratic rings $S$ are in canonical bijection with elements of the set

$$
\mathcal{D}=\{D \in \mathbb{Z} ; D \equiv 0,1(\bmod 4)\}
$$

of discriminants. Under this bijection, a quadratic ring $S$ corresponds to $\operatorname{disc}(S) \in \mathcal{D}$, and an element $D \in \mathcal{D}$ corresponds to the quadratic ring

$$
S(D)=\mathbb{Z}\left[\frac{D+\sqrt{D}}{2}\right] .
$$

7. Prove or disprove and salvage if possible the following statement.

In a noetherian integral domain, only a finite number of prime ideals contain a given nonzero ideal.

