## HOMEWORK 7

DUE WEDNESDAY, DECEMBER 4, 2019 IN CLASS

## Part I: From the textbook

Chapter I, Section 12: 4, 5
Read about primitive Dirichlet characters in Chapter VII, Section 2, page 434.

## Part II

1. Find the primes above 2 in $\mathbb{Z}[\sqrt{5}]$ and in $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.
2. Let $K=\mathbb{F}_{q}$ be a finite field with $q$ elements. Define the zeta function of $K$ to be

$$
Z(t)=(1-t)^{-1} \prod_{P \in K[t] \text { monic, irred }}\left(1-t^{\operatorname{deg} P}\right)^{-1}
$$

(a) Prove that $Z(t)$ is a rational function and determine this rational function. Note that in this case the Riemann Hypothesis says that all zeros of $Z(t)$ have absolute value equal to $q^{-1 / 2}$. If you have found the correct rational expression for $Z(t)$, this is trivial.
(b) Show that

$$
\pi_{q}(m) \sim \frac{q}{q-1} \frac{q^{m}}{m} \quad \text { as } m \rightarrow \infty
$$

where $\pi_{q}(m)$ denotes the number of monic irreducible polynomials with degree up to $m$ in $K[t]$. This is the equivalent of the prime number theorem for the polynomial ring $K[t]$.
Note: The first term in the product that defines $Z(t)$ is the equivalent of the Gamma factor in this context.
3. Let $K$ be a number field. Define the Dedekind zeta function of $K$ to be

$$
\zeta_{K}(s)=\sum_{\substack{0 \neq I \subset \mathcal{O}_{K} \\ \text { ideal }}} \frac{1}{\mathbb{N}(I)^{s}} .
$$

(a) Prove that $\zeta_{\mathbb{Q}}(s)$ is the Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$.
(b) Prove that the series that defines $\zeta_{K}(s)$ is absolutely convergent for $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$. (Note that the convergence is uniform on compacts, which implies that $\zeta_{K}(s)$ is an analytic function on the right half-plane $\operatorname{Re}(s)>1$. You don't have to prove this.)
(c) Prove that for $\operatorname{Re}(s)>1$ we have

$$
\zeta_{K}(s)=\prod_{\substack{0 \neq P \subset \mathcal{O}_{K} \\ \text { prime ideal }}}\left(1-\frac{1}{\mathbb{N}(P)^{s}}\right)^{-1}
$$

4. Let $\chi$ be a primitive Dirichlet character modulo $D$. Define the L-function of $\chi$ to be

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

(a) Prove that if $D=1, L(s, \chi)$ is the Riemann zeta function.
(b) Prove that the series that defines $L(s, \chi)$ is absolutely convergent for $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$. (Note that the convergence is uniform on compacts, which implies that $L(s, \chi)$ is an analytic function on the right half-plane $\operatorname{Re}(s)>1$. You don't have to prove this.)
(c) Prove that for $\operatorname{Re}(s)>1$ we have

$$
L(s, \chi)=\prod_{p \text { prime }}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

5. Let $K=\mathbb{Q}(\sqrt{-1})$. Prove that

$$
\zeta_{K}(s)=\zeta(s) L(s, \chi)
$$

where

$$
\chi(n)= \begin{cases}1 & n \equiv 1 \quad(\bmod 4) \\ -1 & n \equiv 3 \quad(\bmod 4) \\ 0 & n \text { even }\end{cases}
$$

What is the modulus of $\chi$ ? Is $\chi$ primitive?
Hint: Group the prime ideals of $K$ according the rational prime below.
6. Let $d \equiv 2,3(\bmod 4)$ be a square free integer. Set $K=\mathbb{Q}(\sqrt{d})$ and $D=\operatorname{disc}(K)$. Prove that

$$
\zeta_{K}(s)=\zeta(s) L\left(s, \chi_{D}\right)
$$

where

$$
\chi_{D}(n)=\left(\frac{D}{n}\right)
$$

is the Jacobi symbol. (See for instance wikipedia for the definition of the Jacobi symbol). What is the modulus of $\chi_{D}$ ? Is $\chi_{D}$ primitive?
Note: The same sort of statement is true for $d \equiv 1(\bmod 4)$, in the sense that there exists a quadratic Dirichlet character modulo $d=\operatorname{disc} \mathbb{Q}(\sqrt{d})$ such that $\zeta_{\mathbb{Q}(\sqrt{d})}(s)=\zeta(s) L\left(s, \chi_{d}\right)$ and this character $\chi_{d}$ is an extension of the Legendre symbol $\left(\frac{d}{p}\right)$. However, one has to be careful how one extends the Legendre symbol to even integer, namely how one defines $\chi_{d}(n)$ for $n$ even. This is not an issue in the exercise above as in that case the discriminant is even.

