HOMEWORK 7

DUE WEDNESDAY, DECEMBER 4, 2019 IN CLASS

PART I: FROM THE TEXTBOOK

Chapter I, Section 12: 4, 5

Read about primitive Dirichlet characters in Chapter VII, Section 2, page 434.

Part II

- **1.** Find the primes above 2 in $\mathbb{Z}\left[\sqrt{5}\right]$ and in $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.
- **2.** Let $K = \mathbb{F}_q$ be a finite field with q elements. Define the zeta function of K to be

$$Z(t) = (1-t)^{-1} \prod_{P \in K[t] \text{ monic, irred}} (1-t^{\deg P})^{-1}$$

- (a) Prove that Z(t) is a rational function and determine this rational function. Note that in this case the Riemann Hypothesis says that all zeros of Z(t) have absolute value equal to q^{-1/2}. If you have found the correct rational expression for Z(t), this is trivial.
- (b) Show that

$$\pi_q(m) \sim \frac{q}{q-1} \frac{q^m}{m} \quad \text{as } m \to \infty$$

where $\pi_q(m)$ denotes the number of monic irreducible polynomials with degree up to m in K[t]. This is the equivalent of the prime number theorem for the polynomial ring K[t].

Note: The first term in the product that defines Z(t) is the equivalent of the Gamma factor in this context.

3. Let K be a number field. Define the *Dedekind zeta function* of K to be

$$\zeta_K(s) = \sum_{\substack{0 \neq I \subset \mathcal{O}_K \\ \text{ideal}}} \frac{1}{\mathbb{N}(I)^s}.$$

- (a) Prove that $\zeta_{\mathbb{Q}}(s)$ is the Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$.
- (b) Prove that the series that defines $\zeta_K(s)$ is absolutely convergent for $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$. (Note that the convergence is uniform on compacts, which implies that $\zeta_K(s)$ is an analytic function on the right half-plane $\operatorname{Re}(s) > 1$. You don't have to prove this.)

(c) Prove that for $\operatorname{Re}(s) > 1$ we have

$$\zeta_K(s) = \prod_{\substack{0 \neq P \subset \mathcal{O}_K \\ \text{prime ideal}}} \left(1 - \frac{1}{\mathbb{N}(P)^s} \right)^{-1}.$$

4. Let χ be a primitive Dirichlet character modulo D. Define the L-function of χ to be

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$

- (a) Prove that if D = 1, $L(s, \chi)$ is the Riemann zeta function.
- (b) Prove that the series that defines L(s, χ) is absolutely convergent for s ∈ C with Re(s) > 1. (Note that the convergence is uniform on compacts, which implies that L(s, χ) is an analytic function on the right half-plane Re(s) > 1. You don't have to prove this.)
- (c) Prove that for $\operatorname{Re}(s) > 1$ we have

$$L(s,\chi) = \prod_{p \text{ prime}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}$$

5. Let $K = \mathbb{Q}(\sqrt{-1})$. Prove that

$$\zeta_K(s) = \zeta(s)L(s,\chi)$$

where

$$\chi(n) = \begin{cases} 1 & n \equiv 1 \pmod{4} \\ -1 & n \equiv 3 \pmod{4} \\ 0 & n \text{ even.} \end{cases}$$

What is the modulus of χ ? Is χ primitive?

Hint: Group the prime ideals of K according the rational prime below.

6. Let $d \equiv 2,3 \pmod{4}$ be a square free integer. Set $K = \mathbb{Q}(\sqrt{d})$ and $D = \operatorname{disc}(K)$. Prove that

$$\zeta_K(s) = \zeta(s)L(s,\chi_D)$$

where

$$\chi_D(n) = \left(\frac{D}{n}\right)$$

is the Jacobi symbol. (See for instance wikipedia for the definition of the Jacobi symbol). What is the modulus of χ_D ? Is χ_D primitive?

Note: The same sort of statement is true for $d \equiv 1 \pmod{4}$, in the sense that there exists a quadratic Dirichlet character modulo $d = \operatorname{disc} \mathbb{Q}(\sqrt{d})$ such that $\zeta_{\mathbb{Q}(\sqrt{d})}(s) = \zeta(s)L(s,\chi_d)$ and this character χ_d is an extension of the Legendre symbol $\left(\frac{d}{p}\right)$. However, one has to be careful how one extends the Legendre symbol to even integer, namely how one defines $\chi_d(n)$ for n even. This is not an issue in the exercise above as in that case the discriminant is even.