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Abstract. In a recent work, we found formulas for the Fourier coefficients of automorphic forms
of type G2: holomorphic Siegel modular forms on Sp6 that are theta lifts from Gc

2, and cuspidal
quaternionic modular forms on split G2. We have implemented these formulas in the mathemat-
ical software SAGE. In this paper, we explain the formulas of our recent paper and the SAGE
implementation. We also deduce some theoretical consequences of our SAGE computations.
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1. Introduction

The purpose of this paper is to give computations of Fourier coefficients of automorphic forms
of type G2. The automorphic forms we compute come in two flavors. First, there are vector-valued
holomorphic Siegel modular forms on Sp6, that are exceptional theta lifts from algebraic modular
forms for the group Gc

2. Here Gc
2 is a group of type G2 that is split at every finite place and for

which Gc
2(R) is compact. The second sort of automorphic forms we work with are quaternionic

modular forms on split G2. These arise as exceptional theta lifts form algebraic modular forms for
the group F c

4 , which is a group of type F4 that is split at every finite place and for which F c
4 (R) is

compact.
That it is possible to compute exactly the Fourier coefficients of these exceptional theta lifts is

a consequence of the results of [Pol23]. In an accompanying SAGE [Sag22] file [Pol24], we have
implemented the formulas of [Pol23] in the case of level one, so that these Fourier coefficients are
exactly determinable on a computer. The resulting computer calculations are not only satisfying–
for example, they give a partial simultaneous check on the formulas of [Dal21] and [Pol23]–but they
also have theoretical consequences.

We now say a bit more about some theoretical consequences of these calculations, deferring a
discussion of the results of [Pol23] and the SAGE computations to later sections.

1.1. Siegel modular forms of genus three. Let Sp2n denote the symplectic group, consisting
of matrices g with g

(
0n 1n
−1n 0n

)
gt =

(
0n 1n
−1n 0n

)
. Recall that holomorphic Siegel modular forms are a

certain type of automorphic forms for this group. Explicitly, set Sn the n× n symmetric matrices,
and denote by Hn = {Z = X + iY : X,Y ∈ Sn(R), Y > 0} the so-called Siegel upper half-space of
degree n. Here Y > 0 means that Y is positive-definite. The group Sp2n(R) acts on Hn via the
formulas

(
a b
c d

)
Z = (aZ+ b)(cZ+d)−1. If g =

(
a b
c d

)
∈ Sp2n(R), and Z ∈ Hn, set J(g, Z) = cZ+d,
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which lives in GLn(C). Let (ρ, V ) be a finite-dimensional algebraic representation of GLn(C). If
Γ ⊆ Sp2n(Z) is a congruence subgroup, a holomorphic Siegel modular form of weight ρ and level Γ
is a holomorphic function f : Hn → V satisfying f(γZ) = ρ(J(γ, Z))f(Z) for all γ ∈ Γ; one also
imposes a moderate growth condition.

If Γ = Sp2n(Z), we say that f has level one. Holomorphic Siegel modular forms have a Fourier
expansion, which we explicate in the level one case. Denote Sn(Z)

∨ the half-integral symmetric
n × n matrices. I.e., T ∈ Sn(Q) is in Sn(Z)

∨ if the diagonal entries of T are integers, and the
off-diagonal entries are integers divided by 2. If f is a level one Siegel modular form of weight
(ρ, V ), then one can write f(Z) =

∑
T∈Sn(Z)∨:T≥0 af (T )e

2πi(T,Z). Here T ≥ 0 means that T is

positive semi-definite, (T,Z) = tr(TZ) ∈ C, and af (T ) ∈ V . The vectors af (T ) are called the
Fourier coefficients of f . It is known [Ibu02] that, given ρ, there exists an explicitly determinable
finite set Cρ of half-integral symmetric matrices, so that if f is a level one Siegel modular form of
weight ρ and af (T ) = 0 for all T ∈ Cρ, then f = 0. Consequently, computing finitely many Fourier
coefficients of a level one Siegel modular form completely determines it.

Recall that the dual group of Sp6 is SO7(C), which receives a map from G2(C), the dual group
of G2. Langlands functoriality thus predicts a lifting of automorphic representations on groups
of type G2 to automorphic representations of Sp6. One of the results of [Pol23], combined with
work of Gross-Savin [GS98], Magaard-Savin [MS97], and Gan-Savin [GS22], allows one a way to
computationally and provably produce instances of this lift. We have implemented this computation
in SAGE, and one consequence of the SAGE computations is the following theorem.

To setup the theorem, recall that Chenevier-Taibi [CT20] have computed the dimension of the
space of level one holomorphic Siegel modular forms of various weights. The following table is built
from their computations.

(k1, k2) λ = (k1 + 2k2 + 4, k1 + k2 + 4, k2 + 4) m(λ)
(0, 4) (12, 8, 8) 1
(2, 4) (14, 10, 8) 1
(3, 3) (13, 10, 7) 1
(0, 6) (16, 10, 10) 2
(3, 4) (15, 11, 8) 1
(6, 2) (14, 12, 6) 1
(5, 3) (15, 12, 7) 1
(7, 2) (15, 13, 6) 1
(9, 1) (15, 14, 5) 1
(6, 3) (16, 13, 7) 2
(8, 2) (16, 14, 6) 2

In the table, m(λ) denotes the dimension of the space of level one cuspidal Siegel modular forms
for Sp6 of weight λ. The parameter (k1, k2) has to do with algebraic modular forms on Gc

2, and
will be explained in section 3

Theorem 1.1. If λ is in the above table, then every level one cuspidal eigenform of weight λ has
all Satake parameters in G2(C).

1.2. Quaternionic modular forms on split G2. While the paper [Pol23] discusses the holo-
morphic Siegel modular forms of genus three, its main results concern the (quaternionic) modular
forms on split G2. Recall that the split group G2 of this Dynkin type does not have a symmetric
space G2(R)/K with a G2(R)-invariant complex structure. Thus, there is no notion of holomorphic
modular forms on this group.

A great replacement for the holomorphic modular forms was found by Gross-Wallach [GW96]
and Gan-Gross-Savin [GGS02]. To briefly describe these objects, let us begin by recalling that the
maximal compact subgroup K of G2(R) is (SU(2)×SU(2))/µ2, where the first SU(2) is the so-called
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long root SU(2), and the second is the short root SU(2). Forgetting the second SU(2) factor, one
has a surjection K → SU(2)/µ2 ≃ SO(3). For a positive integer ℓ, let Vℓ be the irreducible complex
representation of K that is the pull-back of the 2ℓ + 1 irreducible dimensional representation of
SO(3).

If Γ ⊆ G2(R) is a congruence subgroup, a level Γ quaternionic modular form on G2 of weight ℓ
is a smooth function φ : Γ\G2(R) → Vℓ of moderate growth satisfying

(1) φ(gk) = k−1φ(g) for all k ∈ K;
(2) Dℓφ ≡ 0, for a certain linear, first-order differential operator Dℓ.

The modular form φ is cuspidal if and only if φ is bounded. We say φ is of level one if Γ = G2(Z).
The quaternionic modular forms of weight ℓ have a Fourier expansion, similar in spirit to the

Fourier expansion of holomorphic Siegel modular forms. We explicate this Fourier expansion in the
level one case: For every real binary cubic f(u, v) = au3 + bu2v+ cuv2 + dv3, there is a completely
explicit moderate growth function (defined in terms of K-Bessel functions) Wf,ℓ : G2(R) → Vℓ

satisfying properties (1), (2) of the definition of quaternionic modular forms of weight ℓ. The
function Wf,ℓ(g) is 0 if the discrimant of the cubic f is negative. And, if φ is a level one cuspidal
quaternionic modular form of weight ℓ, then φZ(g) =

∑
f integral aφ(f)Wf (g). Here φZ(g) is a

certain compact integral transform of φ, which uniquely determines it, and the aφ(f) are complex
numbers, called the Fourier coefficients of φ.

While a priori the Fourier coefficients of cuspidal quaternionic modular could be transcendental
numbers, the main result of [Pol23] is that if ℓ ≥ 6 is even, then there is a basis of the space of level
Γ, weight ℓ cuspidal quaternionic modular forms whose Fourier coefficients all lie in the cyclotomic
extension of Q. Moreover, the proof is constructive, giving the exact Fourier expansion of such
G2-cusp forms in an explicitly computable way. We have implemented these explicit formulas of
[Pol23] in the case of level one forms on G2. This allows one to compute finitely many Fourier
coefficients of many level one cusp forms on G2.

Recall that, associated to every integral binary cubic form f is a cubic ring Sf . If f1, f2 are in
the same GL2(Z) orbit, then Sf1 is isomorphic to Sf2 . It follows immediately from the proof of
this correspondence that, associated to f is in fact also an orientation of Sf/Z, by which we mean
a generator of ∧2(Sf/Z). If f1 and f2 are in the same SL2(Z)-orbit, then Sf1 is isomorphic to Sf2

as oriented cubic rings. Now, it is an easy consequence of the existence of the Fourier expansion
of quaternionic modular forms, that if f1 = g · f2 = det(g)−1f2((u, v)g) for g ∈ GL2(Z), then then
aφ(f1) = det(g)ℓaφ(f2). Here the integer ℓ is the weight of φ. Thus, if S is an oriented cubic ring,
we can write aφ(S) for the associated Fourier coefficient.

Here is one theoretical consequence of our ability to compute finitely many Fourier coefficients of
some cuspidal level one quaternionic modular forms on G2. Recall that Dalal [Dal21] has recently
given an explicit formula for the dimension of the space Sℓ(G2(Z)) of level one cuspidal quaternionic
modular forms of weight ℓ ≥ 3. It follows from his formulas that S9(G2(Z)) and S11(G2(Z)) are
each one-dimensional. Let F9, F11 denote the eigenforms spanning these spaces.

Theorem 1.2. The eigenforms F9 and F11 can be normalized to have all Fourier coefficients in Z,
and moreover, all Fourier coefficients af (S) for (oriented) cubic rings S of the form Z×B are 0.

The latter part of Theorem 1.2 gives some evidence for a conjecture of Gross [Li], as we now
explain. For every level one cuspidal holomorphic modular form f on PGL2 of weight 2k, the Arthur
multiplicity conjecture predicts the existence of a cuspidal lift Ff to G2, which is a level one cuspidal
quaternionic modular form of weight k. Suppose now that E is a totally real etale cubic algebra,
with maximal order OE . Gross has suggested that square Fourier coefficient aFf

(OE)
2 should be

related to the central L-value L(f ⊗ VE , 1/2), where VE is the two-dimensional motive attached to
E, i.e., where ζE(s) = ζ(s)L(VE , s). Suppose now that E = Q × F with F real quadratic. Then
L(f ⊗ VE , s) factors as L(f, s)L(f ⊗ ϵF , s) for a quadratic character ϵF . Hence if L(f, 1/2) = 0,
then L(f ⊗ VE , 1/2) = 0. But when k is odd, the central value L(f, 1/2) is indeed 0, so Gross’
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conjecture would predict aFf
(Z × B) = 0 for such f . Thus Theorem 1.2 gives some evidence for

this conjecture.

Remark 1.3. Because the application of our computation of Fourier coefficients is to (conjectural)
lifts from PGL2, the reader might be concerned that we are only able to compute Fourier coefficients
of “small” automorphic representations on G2. However, this is not the case. The quaternionic
modular forms on G2 contain those automorphic forms that sit as the minimal K-type in auto-
morphic representations π = πf ⊗ π∞, with π∞ a quaternionic discrete series. Thus, most of these
eigenforms should sit in generic L-packets.

1.3. Acknowledgements. We thank Gaetan Chenevier for fruitful exchanges related to our com-
putations and Chao Li for explaining to us Gross’s conjecture [Li]. It is also a pleasure to thank
Wee Teck Gan, Dick Gross, and Gordan Savin for inspirational mathematics upon which these
computations are built.

2. Exceptional algebra

We explain in this section a little bit of exceptional algebra, both “theoretically” and “compu-
tationally”. The results in later sections depend upon this algebra.

2.1. Octonions. We begin by recalling the octonions O with positive-definite norm form. These
are an 8-dimensional Q-vector space, with a law of composition O × O → O that is bilinear,
but neither commutative nor associative. There is an element 1 with 1 · x = x · 1 = x for all
x ∈ O. Moreover, there is a positive definite quadratic form nO : O → Q that satisfies nO(xy) =
nO(x)nO(y) for all x, y ∈ O. Let ( , ) denote the symmetric bilinear form induced by nO, so that
(x, y) = nO(x+y)−nO(x)−nO(y) for all x, y ∈ O. Let V7 ⊆ O denote the orthogonal complement of
Q ·1. Define an involution, ∗, on O so that 1∗ = 1 and x∗ = −x if x ∈ V7. Then xx∗ = x∗x = nO(x)
for all x ∈ O; (xy)∗ = y∗x∗; and x + x∗ = trO(x)1 for an element trO(x) ∈ Q. For z1, z2, z3 ∈ O,
define (z1, z2, z3) = trO(z1(z2z3)). It turns out that this quantity is equal to trO((z1z2)z3), and that
one has (z1, z2, z3) = (z2, z3, z1) = (z3, z1, z2).

One way to create O is using quaternion algebras, as follows. Let H be an arbitrary quaternion
Q-algebra, which is ramified at infinity. Let γ ∈ Q× be negative. Define O = H ⊕ H, with
multiplication (x1, y1)(x2, y2) = (x1x2 + γy∗2y1, y2x1 + y1x

∗
2). The norm is nO((x, y)) = nH(x) −

γnH(y), the trace is trO((x, y)) = trH(x), and the involution is (x, y)∗ = (x∗,−y). Varying H and
γ, it turns out, gives isomorphic data (O, nO, 1), which is why we have dropped H and γ from the
notation of O. From now on, we take H to be Hamilton’s quaternions, i.e., the unique quaternion
Q-algebra ramified at 2 and ∞, with basis {1, i, j, k} satisfying i2 = j2 = k2 = −1 and ij = k. We
take γ = −1.

There is a maximal Z-order in O, called Coxter’s ring of integral octonions [Cox46]. We denote
this ring by R. To construct it, set e = (0, 1) and h = 1

2(i+ j + k+ e). Then, the following are a Z
basis of R: jh, e,−h, j, ih, 1, eh, ke. These are the simple roots of the E8 root lattice, with jh the
extended node, 1 the branch vertex, and e,−h, j, ih, 1, eh, ke going along longways.

The group Gc
2 is defined as the algebraic Q-group of linear automorphisms of O that fixes 1 and

respects the multiplication. Its Lie algebra can be identified with the kernel of the map ∧2V7 → V7

given by x ∧ y 7→ xy − yx; see [Pol19] for an explicit basis. An element of ∧2V7 acts on V7 via the
formula x ∧ y(z) = (y, z)x− (x, z)y; this gives the Lie algebra action of g2 = Lie(Gc

2) on V7.
Base-changing the group Gc

2 to K, it becomes split. It is helpful to have a different basis of
O⊗K, in which it is easy to write down nilpotent elements of g2 ⊗K. We define

• e2 =
1
2((0, 1)−

√
−1(0, i))

• e∗3 =
1
2((0, j)−

√
−1(0, k))

• e3 =
1
2((0,−j)−

√
−1(0, k)).

• e∗2 =
1
2((0,−1)−

√
−1(0, i))
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• ϵ1 =
1
2((1, 0)−

√
−1(i, 0))

• ϵ2 =
1
2((1, 0) +

√
−1(i, 0))

• e1 =
1
2((j, 0)−

√
−1(k, 0))

• e∗1 =
1
2((−j, 0)−

√
−1(k, 0))

This basis realizes O⊗K as a split quadratic space: All the above basis elements are isotropic, and
one has (ϵ1, ϵ2) = 1, (ei, e

∗
j ) = −δij , and (ϵi, ej) = (ϵi, e

∗
j ) = 0 for all i, j.

One can define elements of Gc
2(K) by exponentiating nilpotent Lie algebra elements. For SAGE

computation below, we will use the following nilpotent elements.

Lemma 2.1. The elements u = e∗3 and v = e1 form a null pair. Let B be the Borel of Gc
2,K

stabilizing the flag Ke∗3 ⊆ Ke∗3 +Ke1. Then the nilpotent n in g2 ⊗K opposite to B is spanned by
the following six elements:

(1) ℓ1 = e∗1 ∧ e2,
(2) ℓ2 = (ϵ1 − ϵ2) ∧ e∗2 + e3 ∧ e1
(3) ℓ3 = [ℓ1, ℓ2]
(4) ℓ4 = [ℓ3, ℓ2]/2
(5) ℓ5 = [ℓ4, ℓ2]/3
(6) ℓ6 = [ℓ5, ℓ1].

Proof. This follows directly from [Pol19, Section 2.2]. □

2.2. The exceptional cubic norm structure. We now recall a bigger exceptional algebraic
structure. Namely, let J = H3(O) be the 27-dimensional Q-vector space consisting of elements

X =

 c1 x3 x∗2
x∗3 c2 x1
x2 x∗1 c3

 with c1, c2, c3 ∈ Q and x1, x2, x3 ∈ O. This J is called the exceptional

cubic norm structure. The space J comes equipped with a cubic norm NJ : J → Q defined as
NJ(X) = c1c2c3 − c1nO(x1)− c2nO(x2)− c3nO(x3) + (x1, x2, x3).

Let ( , , )J be the unique symmetric trilinear form on J satisfying (X,X,X)J = 6NJ(X) for
all X ∈ J . For X ∈ J , let X# ∈ J∨ be the linear map given by (Z,X#) = 1

2(Z,X,X) for

all Z ∈ J . One says that X has rank one if X ̸= 0 but X# = 0. For X,Y ∈ J , one sets
X×Y = (X+Y )#−X#−Y #, then one has (Z,X×Y ) = (Z,X, Y ) for all Z ∈ J . If U ∈ J satisfies
NJ(U) = 1, one defines a symmetric bilinear form on J as (X,Y )U = (X,U#)(Y,U#)− (U,X, Y ).

We will write elements X of J as X = [c1, c2, c3;x1, x2, x3]. Set I = [1, 1, 1; 0, 0, 0], which has
NJ(I) = 1. Then if X = [c1, c2, c3;x1, x2, x3] and X ′ = [c′1, c

′
2, c

′
3;x

′
1, x

′
2, x

′
3], then (X,X ′)I =

c1c
′
1 + c2c

′
2 + c3c

′
3 + (x1, x

′
1)O + (x2, x

′
2)O + (x3, x

′
3)O. Observe that this bilinear form is positive-

definite. It induces an identification J ≃ J∨, which we denote by ι. If X,X ′ are as above, then

ι(X#) = [c2c3 − n(x1), c3c1 − n(x2), c1c2 − n(x3); (x2x3)
∗ − c1x1, (x3x1)

∗ − c2x2, (x1x2)
∗ − c3x3]

ι(X ×X ′) = [c2c
′
3 + c′2c3 − (x1, x

′
1), c3c

′
1 + c′3c1 − (x2, x

′
2), c

′
1c2 + c1c

′
2 − (x3, x

′
3);

(x′2x3 + x2x
′
3)

∗ − c′1x1 − c1x
′
1, (x

′
3x1 + x3x

′
1)

∗ − c′2x2 − c2x
′
2, (x

′
1x2 + x1x

′
2)

∗ − c′3x3 − c3x
′
3].

An integral lattice in J is the set JR, consisting of those X = [c1, c2, c3;x1, x2, x3] with ci ∈ Z
and xi ∈ R. Following [EG96], we distinguish two different quadratic forms on this lattice. The
first is ( , )I . For the second, define β = 1

2(−1 + i+ j + k, 1 + i+ j + k). Then β2 + β + 2 = 0, so
that trO(β) = −1 and nO(β) = 2. One sets E = [2, 2, 2;β, β, β], so that NJ(E) = 1. The second
quadratic form on JR is ( , )E . This form is again positive-definite [EG96].

Set M1
J to be the algebraic Q-group of linear automorphisms of J preserving the cubic norm. It

is a simply-connected group of type E6. There exists δ ∈ M1
J (Q) for which δE = I. For SAGE

computations, we will use an explicit choice of δ. To set up the result, if γ ∈ J∨ and X ∈ J , let
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Φ′
γ,x : J → J be defined as Φγ,x(z) = −γ × (x × z) + (γ, z)x + 1

3(γ, x)z. Then Φγ,x ∈ Lie(M1
J )

[PWZ19, Proposition 1.1], [Pol20, Section 3.3].
For x, y, z ∈ O, set V (x, y, z) = [0, 0, 0;x, y, z] and V1(x) = V (x, 0, 0), V2(y) = V (0, y, 0) and

V3(z) = V (0, 0, z).

Lemma 2.2. For δ ∈ M1
J (Q), one can take

δ = exp(Φ′
e22,V1(−1)) exp(Φ

′
V1(3/2),e22

) exp(Φ′
e22,V1(−1)) exp(Φ

′
V1(1),e22

)

× exp(Φ′
e22,V1(−β/2)) exp(Φ

′
e11V2(−(β+1)/2)) exp(Φ

′
V3(−β/2),e11

).

The Φ′
γ,x appearing in this product satisfy (Φ′

γ,x)
3 = 0.

Proof. The fact that the (Φ′
γ,x)

3 = 0 above follows from [PWZ19, Proposition 1.1]. That the above
δ satisfies δE = I can be verified by explicit computation in SAGE. □

Let F c
4 be the algebraic subgroup of M1

J of elements that also fix I. We define J0 to be the
subspace of elements X ∈ J with c1+ c2+ c3 = 0; equivalently, J0 is the orthogonal complement to
I under the bilinear pairing ( , )I . It is preserved by F c

4 . There is a surjective F c
4 -equivariant map

∧2J0 → f4 from ∧2J0 to the adjoint representation of F c
4 . It is given by

X ∧ Y 7→ ΦX∧Y := Φ′
ι(X),Y − Φ′

ι(Y ),X .

Let V1 be the kernel of this map. It is an irreducible representation of F c
4 of dimension 273.

We will require special vectors X!, Y! in J ⊗K. To define them, let t be the square-root of −1 in
K, to distinguish it from i ∈ H and iK ∈ HK . Then, in OK , we define the elements

• r1 =
1
2(0, 1− t · iK)

• r2 = r1
• r3 = −t(iK , 0)
• s1 = −t(0, iK)
• s2 =

1
2(0, 1 + t · iK)

• s3 = −1
2(1 + t · iK , 0).

Now, we set X! = [1,−1, 0, r1, r2, r3] and Y! = [0,−1, 1, s1, s2, s3] as elements of J ⊗K.

Lemma 2.3. The wedge X!∧Y! ∈ ∧2J0
K sits in V1, and is a highest weight vector in V1 for a Borel

subgroup of F c
4,K .

Proof. This is proved in [Pol23, Lemma 3.1.3 and Example 3.1.4]. □

We will also need other vectors in JK , obtained from X! and Y! by F c
4 (K)-automorphisms. To

produce many such automorphisms, we use the following lemma. Let e11 = [1, 0, 0; 0, 0, 0] and
similarly define e22 = [0, 1, 0; 0, 0, 0], e33 = [0, 0, 1; 0, 0, 0].

Lemma 2.4. Suppose v′ ∈ O ⊗ K is in the set {ϵ1, ϵ2, e1, e2, e3, e∗1, e∗2, e∗3}. Then Φ′
u∧v, with

u = e11, v = V (0, v′, 0), u = e11, v = V (0, 0, v′), and u = e22, v = V (v′, 0, 0), are nilpotent elements
in the Lie algebra f4. They satisfy (Φ′

u∧v)
3 = 0.

Proof. For some context regarding this Lie algebra elements, see [Pol21, page 23]. One can verify
in SAGE that the (Φ′

u,v)
3 = 0. □

2.3. SAGE implementation of octonions. SAGE already has quaternion algebras implemented.
Using the Cayley-Dickson construction, i.e., realizing O as H⊕H with H equal to Hamilton’s qua-
terions, one can realize the octonions in SAGE. Namely, octonions in SAGE are represented as a
vector consisting of two elements of the quaternion algebra H, or two elements of the quaternion
algebra H ⊗ K. Our file, g2 motives.sage, contains functions to multiply two octonions, take
their trace and conjugate, and compute the inner product of two octonions. Also included is the
trilinear form (x1, x2, x3)O.
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To do computations, we have some specific bases of O and of O⊗K hard-coded into the program.
The first basis is the ordered Coxeter basis, which is a Z-basis of Coxeter’s ring R. The second
basis is the split basis of O⊗K, ordered as [ϵ1, e1, e2, e3, e

∗
1, e

∗
2, e

∗
3, ϵ2]. There is some built-in code

to change basis from one to another, and to go from octonions, to vectors of length 8 of elements
of Q or K. The Gram matrices for the trace pairing and the norm pairing, with respect to the
Coxeter basis, are hard-coded into the file.

2.4. SAGE implementation of the exceptional cubic norm structure. Building upon the
octonions above, we represent elements of J or J ⊗K as a list of length 6, X = [c1, c2, c3, x1, x2, x3]
where the ci ∈ K and the xi ∈ O ⊗ K are octonions. The code contains functions to compute
the norm of an element X, the element ι(X#) or ι(X ×X ′), the pairings (X,X ′)I and (X,X ′)E ,
and the trilinear form (X1, X2, X3)J . The Gram matrix for the pairing (X,X)E , for X ∈ JR, is
hard-coded into the file.

3. Siegel modular forms of genus three

We begin with a discussion of results of [Pol23] that apply to Siegel modular forms of genus
three. We then discuss the SAGE implementation of the Fourier coefficient formula.

3.1. Fourier expansion of the holomorphic exceptional theta lift. In order to put Theorem
1.1 into context and to explain how it is proved, recall that this result asserts the existence of Siegel
modular forms of genus three with all Satake parameters in G2(C). The Siegel modular forms
arise as an exceptional theta lift from algebraic modular forms for the group Gc

2, as studied in
Gross-Savin [GS98]. Specifically, there is a group H of type E7,3, and a very special automorphic
representation Πmin,H on H(A) called the minimal automorphic representation, whose study was
begun by Kim [Kim93]. Gross-Savin use automorphic functions in Πmin,H to lift automorphic
forms on Gc

2 to automorphic forms on Sp6, using the fact that Sp6×Gc
2 → H. Namely, if α is an

automorphic form on Gc
2(A) and Θf ∈ Πmin,H , then one can define the lift

Θf (α)(g) =

∫
Gc

2(Q)\Gc
2(A)

Θf (gh)α(h) dh

which is an automorphic form on Sp6. These lifts can be made to be vector-valued Siegel modular
forms, as proved in [GS98].

Gross-Savin [GS98], Magaard-Savin [MS97] and Gan-Savin [GS22] have produced numerous and
deep results on this exceptional theta lift. One question left open by these works, however, is to
determine when Θf (α) is nonzero for explicit α. One of the first main results of [Pol23] solves this
question, in the case of level one: It gives explicit formulas to determine the Fourier coefficients of
the Siegel modular forms corresponding to the Θf (α).

We explicate some portion of this result, referring to [Pol23] for more details. Recall that we
denote by O the octonion algebra over Q with positive-definite norm form and R ⊆ O is Coxeter’s
order of integral octonions. We write J = H3(O) the exceptional cubic norm structure, which is
the 27-dimensional Q-vector space consisting of 3 × 3 Hermitian matrices with “coefficients” in
O. and let JR be the integral lattice in J consisting of elements whose diagonal entries are in
Z and off-diagonal entries are in R. Recall we denote by V7 the elements of O with 0 trace and
K = Q(

√
−1). For T ∈ J and Z ∈ S3(C) set (T,Z) = 1

2 tr(TZ + ZT ) ∈ C. Recall that elements
of J have a notion of rank, which is an integer in {0, 1, 2, 3}.

Let W3 denote the standard representation of GL3, with basis w1, w2, w3, and let V3 = ∧2W3 the
exterior square representation, with basis v1 = w2 ∧ w3, v2 = w3 ∧ w1, v3 = w1 ∧ w2. Recall that
every irreducible algebraic representation V of GL3(C) sits as the highest weight submodule in
Symk1(V3)⊗ Symk2(W3)⊗ det(W3)

k3 for integers k1, k2, k3 with k1, k2 ≥ 0. The highest weight of
such a V is (k1+k2+k3, k1+k3, k3). Thus, if f is a level one Siegel modular form of weight (ρ, V ),
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then the Fourier coefficients of f are naturally polynomials in v1, v2, v3, w1, w2, w3 of bi-degree
(k1, k2).

Suppose u, v ∈ V7 ⊗K satisfy u2 = uv = vu = v2 = 0; such a pair is said to be null. Let T ∈ J
have off-diagonal entries x1, x2, x3 ∈ Θ. For non-negative integers k1, k2, set

Pk1,k2(T ;u, v) = ((x1, u)v1 + (x2, u)v2 + (x3, u)v3)
k1

× ((x1 ∧ x2, u ∧ v)w3 + (x2 ∧ x3, u ∧ v)w1 + (x3 ∧ x1, u ∧ v)w2)
k2 .

Here (x, u) = tr(x∗u) is the bilinear form associated to the norm on Θ, and (x ∧ y, u ∧ v) =
(x, u)(y, v) − (x, v)(y, u). Moreover, in case either k1 or k2 is equal to 0, rk is defined to be 1 if
k = 0, regardless of if r = 0. Fortunately, this is the convention that appears to be used by SAGE.

Finally, so long as at least one of k1, k2 is positive, set

F u,v
k1,k2

(Z) =
∑

T∈JR,rank(T )=1

σ3(dT )Pk1,k2(T ;u, v)e
2πi(T,Z)

where dT is the largest integer for which d−1
T T ∈ JR.

Theorem 3.1 (See [Pol23]). Let the notation be as above, with at least one of k1, k2 positive. Let
V ⊆ Symk1(V3) ⊗ Symk2(W3) ⊗ det(W3)

k2+4 be the highest weight submodule so that the highest
weight of V is (k1 + 2k2 + 4, k1 + k2 + 4, k2 + 4). Then F u,v

k1,k2
(Z) is a level one holomorphic Siegel

modular form on Sp6 of weight (ρ, V ).

One has the following corollary, which is explained in [Pol23].

Corollary 3.2. Let the notation be as above, and let SΘ
k1,k2

be the span of the F u,v
k1,k2

as u, v vary

over null pairs.

(1) (Gross-Savin) If k2 > 0, the space SΘ
k1,k2

is contained in the space of cusp forms.

(2) The cusp forms in SΘ
k1,k2

are exactly the level one theta lifts of Gross-Savin, which come
from algebraic modular forms on Gc

2 of weights k1ω1 + k2ω2, where ω1 is the highest weight
of the 7-dimensional irrep of G2 and ω2 is the highest weight of the adjoint representation
of G2.

(3) (Gross-Savin, Magaard-Savin, Gan-Savin) Suppose F ∈ SΘ
k1,k2

is a cuspidal Hecke eigen-

form. Then all Satake parameters of F lie in G2(C) ⊆ SO7(C).

Thus, the theorem and the corollary give explicit ways of constructing cuspidal eigenforms on
Sp6, all of whose Satake parameters are in G2(C). The code implemented produces finitely many
Fourier coefficients of the F u,v

k1,k2
. Having run this code, we can obtain Theorem 1.1.

Proof of Theorem 1.1. Suppose (k1, k2) is a pair in the table above. Chenevier-Renard [CR15]
have computed the dimension m(k1, k2) of the space of algebraic modular forms on Gc

2 of weight
(k1, k2). From their comutations combined with [CT20], one sees that for the (k1, k2) in the table,
m(k1, k2) = m(λ(k1, k2)). Consider now the map from level one algebraic modular forms on Gc

2 of
weight k1ω1 + k2ω2 to polynomials in v1, v2, v3, w1, w2, w3 that is the composition of the theta lift

with the T th Fourier coefficient, for T = 1
2

 2 1 1
1 2 1
1 1 2

. Computing the T th Fourier coefficient

of a few F u,v
k1,k2

, one finds a space of polynomials of dimension at least m(k1, k2) = m(λ(k1, k2)).

Consequently, the theta lift is bijective in these cases. Applying part (1) and (3) of Corollary 3.2
gives the theorem. □

Remark 3.3. The theta lift from Gc
2 to Sp6 is not expected to be injective in general. For example,

as explained to the author by Gaetan Chenevier, for every level one cuspidal eigenform f of weight
2k for PGL2, there should be an associated level one algebraic modular form on Gc

2 of weight
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(k − 2)ω2. And, moreover, when k is odd so that the central L-value L(f, 1/2) = 0, the Arthur
multiplicity conjecture predicts that this eigenform should not lift to Sp6. As a specific example,
when k = 9, the dimension m(0, 7) = 1, but computing a few Fourier coefficients of the F u,v

0,7 (Z) in
SAGE for various specific u, v gives 0.

3.2. Sage implementation to find Fourier coefficients. If T = [c1, c2, c3;x1, x2, x3] define the
projection of T to be T0 = [c1, c2, c3; tr(x1), tr(x2), tr(x3)], which is a half-integral symmetric matrix.
To calculate the T0 Fourier coefficient of F u,v

k1,k2
(Z) on Sp6, one must sum σ3(dT )Pk1,k2(T ;u, v) for

all rank one T ∈ JR whose projection is T0. The SAGE code will do this for those T0 with c1 = 1.
Note that in this case, dT is always equal to 1, so the factor σ3(dT ) = 1.

To find those T ∈ Jrk=1
R with proj(T ) = T0, the code implicitly uses the following easy lemma.

Lemma 3.4. Suppose T = [1, b, c;x1, x2, x3] ∈ J . Then T is rank one if and only if n(x2) = c,
n(x3) = b and x1 = (x2x3)

∗.

The SAGE code takes in an element T0 ∈ S3(Z)
∨, with c1(T0) = 1 and finds all rank one

T with projection equal to T0 using Lemma 3.4. Then, for each such T , the code computes
Pk1,k2(T ;u, v) for a given choice of u, v, provided by the user, and sums up the results. The output
is a polynomial in the variables v1, v2, v3, w1, w2, w3. To aid the user in constructing null pairs u, v,
the user must only enter 6 elements of K, [r1, r2, r3, r4, r5, r6]. The code will then produce for you

unew = exp(n)e∗3, vnew = exp(n)e1, where n =
∑6

j=1 rjℓj in the notation of Lemma 2.1

4. Quaternionic modular forms on G2

In this section, we give our results on quaternionic modular forms on split G2. We begin by
recalling some of the results of [Pol23] in this setting, and then explain the proof of Theorem 1.2.
The proof of this theorem uses SAGE computations, which are also explained in this section.

4.1. Fourier expansion of the quaternionic exceptional theta lift. To set up the first result,
recall K = Q(

√
−1). If w = (a, b, c, d) ∈ WJ , define prI(u, v) to be the binary cubic form given as

prI(u, v) = au3 + (b, I#)u2v + (c, I)uv2 + dv3. Set JK = J ⊗K and J0
K to be the trace 0 elements

of JK . Set WJ(Z) = Z ⊕ JR ⊕ J∨
R ⊕ Z. For w ∈ WJ(Z), let dw be the largest integer so that

d−1
w w ∈ WJ(Z). Finally, set Pm,I(w;X,Y ) = ((b,X)I(c, Y )− (b, Y )I(c,X))m.

Theorem 4.1 (See [Pol23]). Suppose X,Y ∈ J0
K are singular in the sense that X ∧ Y ∈ ∧2J0

K is
a highest weight vector of V1 for some Borel. Let m ≥ 1 be an integer. Then there is a cuspidal
quaternionic modular form ΘI(X,Y ;m) on G2 of level one and of weight 4 + m with Fourier
expansion

ΘI(X,Y ;m)Z(g) =
∑

w=(a,b,c,d)∈WJ (Z)rk=1

σ4(dw)Pm,I(w;X,Y )WprI(w),4+m(g).

For the cubic norm structure (JR, E), there is an analogous result. Fix δ ∈ M1
J (Q) with δE = I,

as in subsection 2.2. Set (u, v)E = 1
4(E,E, u)(E,E, v)− (E, u, v). For w = (a, b, c, d) ∈ WJ , define

prE(w) = au3 + (b, E#)u2v + (c, E)uv2 + dv3. Similar to the above, define Pm,E(w;XE , YE) =
((b,XE)E(c, YE)− (b, YE)E(c,XE))

m.

Theorem 4.2 (See [Pol23]). Suppose X,Y ∈ J0
K are singular in the sense that X ∧ Y ∈ ∧2J0

K

is a highest weight vector of V1 for some Borel. Let m ≥ 1 be an integer, and set XE = δ−1X,
YE = δ−1Y . Then there is a cuspidal quaternionic modular form ΘE(XE , YE ;m) on G2 of level
one and of weight 4 +m with Fourier expansion

ΘE(XE , YE ;m)Z(g) =
∑

w=(a,b,c,d)∈WJ (Z)rk=1

σ4(dw)Pm,E(w;XE , YE)WprE(w),4+m(g).



10 AARON POLLACK

We can now explain the proof of Theorem 1.2, which uses our SAGE implementation to compute
finitely many Fourier coefficients of the ΘE(XE , YE ;m).

Proof of Theorem 1.2. Letm = 5 orm = 7. Computing a single Fourier coefficient of ΘE(XE , YE ;m)
for a somewhat randomly chosen XE , YE , one sees that these quaternionic modular forms are
nonzero. Thus, by Dalal’s dimension formula [Dal21], these quaternionic modular forms must
be F9 and F11. It is proved in [Pol23] that, for each m, the span of the ΘI(X,Y ;m) and the
ΘE(XE , YE ;m) has a basis consisting of cusp forms with integral Fourier coefficients. Conse-
quently, F9 and F11 can be normalized to have Fourier coefficients in Z. It is always true that all
Fourier coefficients of ΘE(XE , YE ;m) corresponding to cubic rings S = Z × B are 0; this follows
from [EG96, Proposition 5.5]. This concludes the proof. □

Fix an integral binary cubic form f(u, v) = au3 + bu2v + cuv2 + dv3. In order for the above
Theorems to make sense, one needs to know that the set of rank one w ∈ WJ(Z) with prI(w) = f
is finite; likewise for prE(w). This is true. To make the SAGE implementation work, we need an
explicit form of this finiteness, which we give in the following lemma for the case when the binary
cubic form f is monic, i.e., when a = 1.

Lemma 4.3. Suppose f(u, v) is as above, with a = 1. Let Ωf,I = {w ∈ WJ(Z) : rk(w) =
1, prI(w) = f} and likewise for Ωf,E. Then

Ωf,I = {(1, T, T#, nJ(T )) : (T, I
#) = b, (T#, I) = c, nJ(T ) = d}

and
Ωf,E = {(1, T, T#, nJ(T )) : (T,E

#) = b, (T#, E) = c, nJ(T ) = d}.
Moreover, if (1, T, T#, nJ(T )) ∈ Ωf,I , then (T, T )I = b2−2c. Likewise, if (1, T, T#, nJ(T )) ∈ Ωf,E,
then (T, T )E = b2 − 2c.

Note that the lemma implies the finiteness in an explicit way, because the quadratic forms
(T, T )I and (T, T )E are positive-definite. The lemma is an easy consequence of properties of rank
one elements (see, for instance, [Pol21]) and the definitions.

The SAGE file g2 motives.sage includes the function Dalal dim k(k), that takes Dalal’s ex-
plicit formula [Dal21] for the dimension of the space of level one QMFs on G2 of weight k ≥ 3 and
puts it into the computer. The smallest weight in which there is a nonzero cusp form, according
to Dalal’s formula, is in weight k = 6. In this case, the space of weight 6 level one quaternionic
modular forms is one-dimensional, spanned by an element F6. Computing with the SAGE code,
one finds the F6 can be normalized to have the following Fourier coefficients. (The computation
took about one hour on my laptop.). In the table, the ordered 3-tuple is the (b, c, d) of the monic
binary cubic f(u, v) = u3 + bu2v + cu2v + dv3.

f(u, v) = u3 + bu2v + cu2v + dv3 a(f)
(0,−3,−1) 48600
(0,−3, 0) 1620
(0,−2,−1) 15
(0,−2, 0) 1680
(0,−1, 0) −7
(1,−3,−3) −10080
(1,−3,−2) 25575
(1,−3,−1) 28800
(1,−3, 0) −1485
(1,−2,−2) −30
(1,−2,−1) 12600
(1,−2, 0) −63



COMPUTATION OF FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS OF TYPE G2 11

4.2. SAGE implementation: (JR, I). To make the formulas used in Theorem 4.1 explicit, so
that it can put into SAGE, one uses the following easy lemma.

Lemma 4.4. Let T = [u1, u2, u3, v1, v2, v3], X = [x0, x1, x2;x3, x4;x5] and Y = [y0, y1, y2; y3, y4, y5].

(1) (T, T )I = u21 + u22 + u23 + 2n(v1) + 2n(v2) + 2n(v3).
(2) (T, I#) = u1 + u2 + u3
(3) (T#, I) = u1u2 + u2u3 + u3u1 − n(v1)− n(v2)− n(v3)
(4) det(T ) = u1u2u3 − u1n(v1)− u2n(v2)− u3n(v3) + (v1, v2, v3)O.
(5) (X,T )I = x0u1 + x1u2 + x2u3 + (v1, x3) + (v2, x4) + (v3, x5)
(6) (X,T#) = A1 −A2 +A3 where

(a) A1 = x0(u2u3 − n(v1)) + x1(u3u1 − n(v2)) + x2(u1u2 − n(v3))
(b) A2 = u3(x5, v3) + u2(x4, v2) + u1(x3, v1)
(c) A3 = (x3, v2, v3) + (x4, v3, v1) + (x5, v1, v2).

and one has similar formulas for (Y, T )I and (Y, T#).

Now every piece of the computation of Pm,I((1, T, T
#, nJ(T ));X,Y ) is completely explicit, in-

cluding how to find all T with prI((1, T, T
#, nJ(T ))) = f(u, v). Indeed, to find all such T , it suffices

to find all u1, u2, u3 ∈ Z and v1, v2, v3 ∈ R with u21 + u22 + u23 + 2n(v1) + 2n(v2) + 2n(v3) = b2 − 2c.
Because this quadratic form is visibly decomposable, to find such ui and vj , one can do it piecewise
for the quadratic forms x 7→ x2 for x ∈ Z and v 7→ nO(v) for v ∈ R. This fact leads to our
implementation to compute the Fourier coefficients of ΘI being faster than its ΘE counterpart.

To find various suitable singular pairs X,Y to use as inputs, the code has implemented the
exponential of the elements Φ′

u∧v of Lemma 2.4.

4.3. SAGE implementation: (JR, E). To implement the formulas in Theorem 4.2, one uses the
following straightforward lemma:

Lemma 4.5. Suppose T = [c1, c2, c3;x1, v2, v3]. Then (E#, T ) = 2(c1+ c2+ c3)+ (β∗, x1+ v2+ v3)
and

(E, T#) = 2(c1c2 + c2c3 + c3c1 − n(x1)− n(v2)− n(v3))− (β, c1x1 + c2v2 + c3v3)

+ (β, v2, v3) + (β, v3, x1) + (β, x1, v2).

Moreover, the value (T,X)E can be computed using the Gram matrix for the quadratic form (T, T )E.

Remark 4.6. The x1 in the above lemma is not a typo; we have called that octonion x1, instead of
v1, so that the lemma is similar to the variables used in the SAGE code (which, unfortunately, are
not completely parallel.)

To compute the f(u, v) Fourier coefficient of ΘE(XE , YE ;m), one first finds all T ∈ JR with
(T, T )E = b2 − 2c. This uses SAGE’s short vector list up to length function. Then, having
found all such T = [c1, c2, c3;x1, x2, x3], we group them by those that have the same c1, c2, c3 and
x1. This allows some of the computation implicit in Lemma 4.5 that is identical for multiple T
to be done once, instead of repeatedly. SAGE computes each Pm,E(w;XE , YE) and sums up the
results.

To find various suitable singular pairs XE , YE one again uses the exponential of the elements
Φ′
u∧v of Lemma 2.4, together with the element δ−1

E , which is also implemented in SAGE.
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