Last time: factor rings

\(R \) ring
\(A \subseteq R \) an ideal

\(R/A \) is a ring via the multiplication

\[(a + A)(b + A) = ab + A.\]

Def. \(R \) commutative ring. A *prime ideal* \(A \) of \(R \) is a proper ideal of \(R \) satisfying \(ab \in A \Rightarrow a \in A \) or \(b \in A \).

A *maximal ideal* \(A \) of \(R \) is a proper ideal for which \(B \supseteq A \) and \(B \) an ideal \(\Rightarrow B = A \) or \(B = R \).

Ex. \(n \mathbb{Z} \subseteq \mathbb{Z} \). \(n \mathbb{Z} \) is a prime \((=) n \) is prime. \((n \geq 1 \) pos int \)

\(\mathbb{p} \) prime: \(ab \in \mathbb{p} \mathbb{Z} \Rightarrow p|ab \Rightarrow p|a \) or \(p|b \)

\(\frac{\text{multiples}}{\mathbb{p}} \Rightarrow \mathbb{a} \in \mathbb{p} \mathbb{Z} \) or \(\mathbb{b} \in \mathbb{p} \mathbb{Z} \)

Ex. \(R \) integral domain. Then \(\mathfrak{p} \mathfrak{o} \mathfrak{s} \) is prime.

PF: \(ab \in \mathfrak{p} \mathfrak{o} \mathfrak{s} \) means \(ab = 0 \Rightarrow a = 0 \) or \(b = 0 \) \(\frac{\text{b/c } R \text{ an integral domain}}{\Rightarrow \mathbb{a} \in \mathfrak{p} \mathfrak{o} \mathfrak{s} \text{ or } \mathbb{b} \in \mathfrak{p} \mathfrak{o} \mathfrak{s}} \)
Note: The prime ideals of \(\mathbb{Z} \) are precisely the ideals \(\mathbb{Z} \) and \(\langle p \rangle \), prime number.

Ex 3 \(R = \mathbb{Z}[x] \). Then \(\langle x \rangle \) is prime.

Let \(f = a_0 + a_1 x + \ldots + a_m x^m \) and suppose \(f \cdot g \in \langle x \rangle \).
\[g = b_0 + b_1 x + \ldots + b_n x^n \]
\[fg = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + \ldots + a_m b_n x^{m+n} \]
\[fg \in \langle x \rangle \] means \(a_0 b_0 = 0 \) \(\Rightarrow \) \(a_0 = 0 \) or \(b_0 = 0 \)
\[\Rightarrow f \in \langle x \rangle \text{ or } g \in \langle x \rangle \]

\(\langle x \rangle \) is not maximal because \(\langle x \rangle \nsubseteq \langle x, 2 \rangle \)

\(\langle 2, x \rangle \) is maximal

[Aside: can imagine \(\langle 2, x, x^2 + 1 \rangle \nsubseteq \langle 2, x \rangle \) is proper.]

But in fact, \(\langle 2, x, x^2 + 1 \rangle = \mathbb{Z}[x] \)

Suppose \(A \nsubseteq \langle 2, x \rangle \) is an ideal. Suppose \(f \in A \) and \(f \notin \langle 2, x \rangle \).

Then \(f \) has odd constant term, because we proved before that
\(\langle 2, x \rangle \) precisely consists of the polynomials with even constant term.

\[f = 2m + 1 + x \cdot h(x) \text{ for } m \in \mathbb{Z}, h(x) \in \mathbb{Z}[x] \]
\[1 = \frac{f - 2m}{\in A} - \frac{h}{\in A} \implies 1 \in A. \]

\[\Rightarrow A = \mathbb{Z}[x]. \]

True: \(A \triangleleft R \) is an ideal and \(A \) contains a unit of \(R \) then \(A = R \). (HW question)

Ex: \((x^2 + 1) \subseteq (R[x]) \) is maximal.

Pf: Suppose \(A \supsetneq (x^2 + 1) \) is an ideal strictly containing \((x^2 + 1) \).

Then \(\exists f \in A, f \notin (x^2 + 1) \).

Have
\[
f(x) = q(x)(x^2 + 1) + r(x), \quad \text{where} \quad q(x) \in (R[x]) \quad \text{and} \quad r(x) \neq 0.
\]

\[f(x) = (a + bx)(a - bx) = a^2 - b^2 x^2 = a^2 - b^2 (x^2 + 1) - 1 \]

\[= a^2 + b^2 + b^2 (x^2 + 1) \implies a^2 + b^2 = (a + bx)(a - bx) - b^2 (x^2 + 1) \in A. \]

\[\implies A \text{ contains a unit} \implies A = (R[x]). \]

Thm \(R \), commutative ring w/ unity and \(A \triangleleft R \) is an
Thm. \(R \) commutative ring w/ unity and \(A \subseteq R \) is an ideal. Then \(R/A \) is an integral domain (\(\Rightarrow \) \(A \) is prime).

Pf. Suppose \(A \) is prime.

- Suppose \((a+A)(b+A)=0\) in \(R/A \).

Then \(ab+A=0+A \)

\[\Rightarrow ab \in A \Rightarrow a \in A \ \text{or} \ b \in A \]

\[\Rightarrow a+A=0 \ \text{in} \ R/A \quad \text{or} \quad b+A=0 \ \text{in} \ R/A \quad \Rightarrow R/A \ \text{is an integral domain.} \]

Conversely, suppose \(R/A \) is an integral domain, and \(ab \in A \).

Then

\[0 = ab+A = (a+A)(b+A) \]

\[\Rightarrow a+A=0 \ \text{in} \ R/A \Rightarrow a \in A \]

\[\text{or} \ b+A=0 \ \text{in} \ R/A \Rightarrow b \in A \quad \Rightarrow A \ \text{is a prime ideal.} \]

Thm. \(R \) commutative ring w/ unity and \(A \subseteq R \) an ideal.

Then \(R/A \) is a field (\(\Rightarrow \) \(A \) is a maximal ideal)

Pf. Suppose \(A \) max'0 ideal. If \(b \notin A \), need to prove that

\(b+A \) has a multiplicative inverse in \(R/A \).

But \(\langle b \rangle + A = \{ \sum br + a : r \in R, a \in A \} \) is an ideal
But $\langle b \rangle + A = \left\{ br + a : r \in R, a \in A \right\}$ is an ideal strictly containing A.

$\implies \langle b \rangle + A = R \implies 1 \in \langle b \rangle + A$.

$\implies 1 = br + a \quad \text{for some } r \in R, a \in A$

$\implies (b + A)(r + A) = br + A = 1 - a + A = 1 + A$

$\implies r + A \text{ is the desired mult. inverse.}$