Last time: Division algorithm

Example $x^2 - x$ in $\mathbb{Z}/6\mathbb{Z}[x]$

has roots: 0, 1, 3, 4 modulo 6

E.g. $4^2 - 4 = 12 \equiv 0 \mod 6$

Thm A nonzero polynomial of degree n over a field has at most n roots.

Pf: Induction on n

Base case: If f has degree 0, then f is a nonzero constant, so f has no roots. ✓

Inductive step: Now assume f has degree $n \geq 1$. If f has no zeros, then we're done.

If a is a zero of f, then

* $f(x) = g(x)(x-a)$

where $g(x)$ has degree $n-1$.

Suppose b is another root of f. (If f has no other roots, then we're done.)
0 = f(b) = q(b)(b-a)

But b-a \neq 0 \implies q(b) = 0.

Thus all roots of f that are not a, are roots of q.

by Induction: There are n-1 such roots

\implies \text{at most } n \text{ total distinct roots of } f.

Root of a polynomial in \(F \) of \(f(x) \in F[x] \) is an element \(\alpha \) of \(F \) such that \(f(\alpha) = 0 \).

Suppose \(F \subseteq E \) are fields, and \(f(x) \in F[x] \). A root of the polynomial \(f \) in \(E \) is an element \(\alpha \) of \(E \) so that \(f(\alpha) = 0 \).

Example: \(\mathbb{R} \subseteq \mathbb{C} \), \(f(x) = x^2 + 1 \in \mathbb{R}[x] \).

Then \(f \) has no roots in \(\mathbb{R} \), but it has roots \(i, -i \in \mathbb{C} \).

\(f(i) = (-i)^2 + 1 = -1 + 1 = 0 \).

Example: \(\mathbb{Q} \subseteq \mathbb{R} \), \(f(x) = x^2 - 2 \in \mathbb{Q}[x] \).

Then \(f \) has no roots in \(\mathbb{Q} \), but it has roots \(\pm \sqrt{2} \in \mathbb{R} \).

Def: A principal ideal domain is an integral domain \(R \) in which every ideal is principal, i.e. every ideal
In which every ideal is principal, i.e., every ideal has the form \(<a> = \{ra : r \in R\} \) for some \(a \in R\).

Example: \(\mathbb{Z}\) is a P.I.D.

Pf: If \(I \subseteq \mathbb{Z}\) is an ideal, then \(I = n\mathbb{Z}\) for some \(n \in \mathbb{Z}\).

Non-example: \(\mathbb{Z}[x]\) is not a P.I.D.

E.g., \(<2, x> \subseteq \mathbb{Z}[x]\) is not principal.

In general, for a ring \(R\), \(a_1, a_2, \ldots, a_k \in R\) then
\[
<\{a_1, \ldots, a_k\} = \{\sum_{i=1}^{k} r_ia_i : r_1, r_2, \ldots, r_k \in R\}.
\]

Thm: If \(F\) is a field, then \(F[x]\) is a P.I.D.

Pf: \(F[x]\) is an integral domain.

Now suppose \(I \subseteq F[x]\) is an ideal. If \(I = \{0\}\), then done. Otherwise, let \(g(x) \in I\) be an element of minimum positive degree. We claim: \(I = \langle g \rangle\).

Pf of Claim: Suppose \(f \in I\). Have \(f = qg + r\), \(\deg(r) < \deg(g)\). But \(f \in I, g \in I \Rightarrow r \in I\). This implies \(r = 0\) or \(r\) is a nonzero constant.
If r is a $\neq 0$ constant, $I = R - \langle 1 \rangle$.

Otherwise $r = 0 \implies f \divides qg \implies f \in \langle g \rangle$.

Corollary Suppose F is a field, I an ideal of $F[x]$, with $I \neq 0$, $I \neq R$. Then $I = \langle g \rangle$ iff g is an element of I with minimum positive degree.

Pf: We proved this in the course of proving the above theorem.

Example Consider $\phi : (\mathbb{R}[x] \to \mathbb{C}$ defined by $\phi(f) = f(i)$.

Then $x^2 + 1 \in \ker(\phi)$

- $x^2 + 1$ is a polynomial of min degree in $\ker(\phi)$, because any polynomial of smaller degree is of form $at + bx$, $a, b \in \mathbb{R}$

And $\phi(ax + bx) = a + bi \neq 0$ unless $a = b = 0$.

By Corollary, $\ker(\phi) = \langle x^2 + 1 \rangle = (\mathbb{R}[x]/\langle x^2 + 1 \rangle \cong \mathbb{C}$, by the first isom theorem.

I.e. $\mathbb{R}[x]/\langle x^2 + 1 \rangle \cong \frac{\mathbb{R}[x]}{\langle \ker(\phi) \rangle} \overset{\sim}{\twoheadrightarrow} \phi(\mathbb{R}[x]) = \mathbb{C}$

First Isom Thm

Then Suppose $d \in \mathbb{Z}$, and d is not a square. Then $\mathbb{Z}[x]/\langle x^2 - d \rangle \cong \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$.
\[\mathbb{Z} \langle x \rangle / \langle x^2 - d \rangle \cong \mathbb{Z}[\sqrt{d}] = \{ a + b \sqrt{d} : a, b \in \mathbb{Z} \} \]

Lemma: Suppose \(a + b \sqrt{d} = 0 \), with \(a, b \in \mathbb{Z} \). Then \(a = b = 0 \).

Pf: If \(b = 0 \), then \(a = 0 \), so we're done. Otherwise, \(\sqrt{d} = \frac{-a}{b} \implies d = \frac{a^2}{b^2} \implies d \) is a square. \(-x\)

Pf of Thm: Define \(\phi: \mathbb{Z}[x] \to \mathbb{Z}[\sqrt{d}] \) as \(\phi(f) = f(\sqrt{d}) \).

Clear that \(\phi \) is a surjective (hence, a ring homomorphism).

Claim: \(\ker \phi = \langle x^2 - d \rangle \).

Pf of Claim: Suppose \(f(x) = q(x)(x^2 - d) + a + bx \)

Then \(f(\sqrt{d}) = 0 \) \(\implies a + b\sqrt{d} = 0 \) \(\implies a - b = 0 \).

\(\implies a = b = 0 \).

\(\implies f \in \langle x^2 - d \rangle \).

\(\implies \ker \phi = \langle x^2 - d \rangle \).

\(\implies \mathbb{Z}[x] / \langle x^2 - d \rangle \cong \mathbb{Z}[x] / \ker \phi \cong \mathbb{Z}[\sqrt{d}] \). \(\Box \)

Ex: \(\mathbb{Z}[x] \to \mathbb{Z}/2\mathbb{Z} \)

\(f \mapsto f(0) \mod 2 \)
\[f \rightarrow f(0) \mod 2 \]

\[\ker f = \langle 2, x \rangle, \] which is not principal.