Question:

“Generalize”: Suppose \(f, g \in \mathbb{Z}[x] \) of degree \(n \).
And suppose moreover \(f \) and \(g \) agree at \(n+1 \) distinct integers, i.e., \(\exists \) integers \(a_0, a_1, \ldots, a_n \) all distinct such that \(f(a_j) = g(a_j) \) \(\forall j \). Then prove \(f(x) = g(x) \).

Last time: Irreducibility of polynomials.

A polynomial is reducible if it has a nontrivial factorization.

Claimed:
- \(x^2 + 1 \) is irreducible over \(\mathbb{Z}/3\mathbb{Z} \)
- \(x^2 - 2 \) is irreducible over \(\mathbb{Q} \)

- In general, hard to verify if a polynomial is irreducible.

Thm: Let \(F \) be a field. If \(f(x) \in F[x] \) and \(\deg(f) = 2 \) or \(3 \), then \(f \) is reducible over \(F \) \(\iff \) \(f(x) \) has a zero in \(F \).

Non-example: \(x^4 + 2x^2 + 1 \in \mathbb{Q}[x] \)

- \((x^2 + 1)^2 \)
\[(x^2 + 1)^2 \] so is reducible over \(\mathbb{Q} \)

- Has no roots in \(\mathbb{Q} \), in fact, no roots in \(\mathbb{R} \)

\[\text{Pf: Suppose first } f \text{ has a zero in } \mathbb{F}_q, \text{ say } f(a) = 0. \]

Then \[f(x) = (x-a)g(x) \Rightarrow f \text{ is reducible.} \]

Conversely, suppose \(f \) is reducible, so \[f(x) = g(x)h(x) \]

with \(\deg(g), \deg(h) < \deg(f) \). Then at least one of \(g \) or \(h \) is degree one, say \[g(x) = ax + b \] with \(a, b \in \mathbb{F}_q \) \(a \neq 0 \). Then \(-a^{-1}b\) is a root of \(g \) and thus of \(f \), so \(f \) has a zero. \(\Box \)

Ex \(x^2 + 1 \) has no zeros in \(\mathbb{Z}/32 \) because

\[
\begin{align*}
0^2 + 1 &= 1 \\
1^2 + 1 &= 2 \\
2^2 + 1 &= 5 \equiv 2
\end{align*}
\]

\[\Rightarrow x^2 + 1 \text{ is irreducible over } \mathbb{Z}/32 \]

Ex \(x^2 - 2 \) is irreducible over \(\mathbb{Q} \) because \(2 \) is not a square in \(\mathbb{Q} \), so there are no zeros in \(\mathbb{Q} \).
However, \(x^2 - 2\) is reducible over \(\mathbb{R}\).

Thm: Let \(F\) be a field and \(p(x) \in F[x]\). Then \(\langle p(x) \rangle\) is a maximal ideal in \(F[x]\) \(\iff\) \(p(x)\) is irreducible over \(F\).

Pf: Suppose first \(\langle p(x) \rangle\) is maximal, and \(p(x) = g(x)h(x)\). Then \(\langle p(x) \rangle \subseteq \langle g(x) \rangle \subseteq F[x]\).

But \(p(x)\) is maximal \(\Rightarrow\)

\[\langle p(x) \rangle = \langle g(x) \rangle \text{ or } \langle g(x) \rangle = F[x].\]

In this case, \(\deg(p) = \deg(g)\)
\[\overset{\text{??}}{=\rightarrow} h(x)\text{ is a unit.}\]

\[\overset{\text{?}}{=} p(x)\text{ is irreducible.}\]

Suppose conversely \(p(x)\) is irreducible over \(F\), and
\[\langle p(x) \rangle \subseteq I \subseteq F[x]\]
where \(I\) is an ideal.
\[F[x] \text{ is PID. } \implies I = \langle g(x) \rangle \text{ for some } g. \]

\[\implies p(x) = g(x)h(x) \text{ for some } h(x) \in F[x]. \]

\[p(x) \text{ irreducible } \implies \text{ one of } g \text{ or } h \text{ is a unit} \]

\[\cdot g(x) \text{ a unit } \implies I = \langle g(x) \rangle = F[x] \]

\[\cdot h(x) \text{ a unit } \implies I = \langle g(x) \rangle = \langle p(x) \rangle \]

\[\implies \langle p(x) \rangle \text{ is maximal}. \]

\(\square \)

Aside! \(x^2 - 2 \) is irreducible over \(\mathbb{Q} \)

\[x^2 - 2 = 2 \left(\frac{1}{2} x^2 - 1 \right) \text{ but } 2 \in \mathbb{Q} \text{ is a unit.} \]

Corollary

Let \(F \) be a field, \(p(x) \) irreducible polynomial over \(F \).

Then \(F[x]/\langle p(x) \rangle \) is field.

This corollary is how one actually constructs new fields from old fields.

Cor

Let \(F \) be a field, and \(p(x), a(x), b(x) \in F[x] \).

If \(p(x) \) is irreducible over \(F \) and \(p(x) | a(x)b(x) \) then \(p(x) | a(x) \) or \(p(x) | b(x) \).
Pf: \(\langle p(x) \rangle \) is maximal \(\Rightarrow \) \(\langle p(x) \rangle \) is a prime ideal.

\[a(x) b(x) \in \langle p(x) \rangle \Rightarrow a(x) \in \langle p(x) \rangle \text{ or } b(x) \in \langle p(x) \rangle. \]

But \(a(x) \in \langle p(x) \rangle \) means \(p(x) \mid a(x) \)
and \(b(x) \in \langle p(x) \rangle \) means \(p(x) \mid b(x) \). \(\square \)

Examples

1. \(F = \mathbb{Q} \), \(p(x) = x^2 - 2 \). Then
 \[\mathbb{Q}[x] / \langle x^2 - 2 \rangle \]

 is a field. In fact,

 \[\mathbb{Q}[x] / \langle x^2 - 2 \rangle \cong \mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} : a, b \in \mathbb{Q} \} \]

Idea of proof: Define \(\phi : \mathbb{Q}[x] \rightarrow \mathbb{Q}[\sqrt{2}] \)

\[f(x) \mapsto f(\sqrt{2}) \]

- Clearly \(\phi \) is a surj ring homom.
- Can check \(\ker(\phi) = \langle x^2 - 2 \rangle \)
- First Isom Thm \(\mathbb{Q}[x] / \langle x^2 - 2 \rangle \cong \mathbb{Q}[\sqrt{2}] \)

2. \(\mathbb{Z}[i] / \langle 3 \rangle \cong \left(\mathbb{Z}[x] / \langle x^2 + 1 \rangle \right) / \langle 3 \rangle \)

\[\cong \mathbb{Z}[x] / \langle 3, x^2 + 1 \rangle \]
\[\mathbb{Z}_3[x] / \langle x^2 + 1 \rangle \]

But \(x^2 + 1 \) is irreducible over \(\mathbb{Z}_3 \)

\[\mathbb{Z}[x] / \langle 3 \rangle \] is a field.

In fact, this field has \(9 = 3^2 \) elements.

Example 3 The polynomial \(x^3 + x + 1 \) is irreducible over \(\mathbb{Z}_2 \)

\[\mathbb{Z}_2[x] / \langle x^3 + x + 1 \rangle \] is a field.

This field has \(8 = 2^3 \) elements.

Lemma Suppose \(F \) is a field, \(g(x) \in F[x] \) a polynomial.

The polynomials in \(F[x] \) of degree \(\leq \deg(g) \) are a complete set of distinct coset representatives for \(F[x] / \langle g(x) \rangle \).

Pf: Suppose \(f(x) \in F[x] \). Then \(f = qg + r \) with \(\deg(r) < \deg(g) \)

\[\Rightarrow f(x) + \langle g(x) \rangle = f(x) + \langle g(x) \rangle. \]
Conversely, if \(r_1, r_2 \in F(x) \) and \(\deg(r_1), \deg(r_2) < \deg(g) \) then
\[
\text{if } \quad r_1(x) + \langle g(x) \rangle = r_2(x) + \langle g(x) \rangle
\]
\[
\implies g(x) \mid r_1 - r_2
\]
\[
\implies r_1(x) - r_2(x) = 0 \quad \Rightarrow \quad r_1(x) = r_2(x).
\]