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1. Introduction

NOTE: This introduction explains what I would have discussed, if time were unlimited. One
can see from the table of contents what we actually had time to cover.

There are three parts to these notes:

(1) Explicit models of the exceptional Lie algebras and Lie groups, including E8;
(2) A treatment of some of Bhargava’s “Higher Composition Laws”, from the point of view of

exceptional algebraic structures;
(3) Modular forms on quaternionic exceptional groups.

The expert reader can glance at the table of contents to see what is covered. We now give an
introduction to some of the topics just mentioned.

1.1. The exceptional groups. Classical groups include GLn,Sp2n = Sp(W ; 〈 , 〉), and O(V, q).
The groups Sp(W ) and O(V ) are defined as the subgroups of the general linear group of a vector
space that fix a particular bilinear form. If W is a 2n-dimensional vector space with non-degenerate
symplectic form 〈 , 〉, then

Sp2n = Sp(W ) = {g ∈ GL(W ) : 〈gw1, gw2〉 = 〈w1, w2〉∀w1, w2 ∈W}.

Similarly, if q is a non-degenerate quadratic form on the vector space V with associated bilinear
form (x, y) = q(x+ y)− q(x)− q(y), then

O(V, q) = {g ∈ GL(V ) : (gv1, gv2) = (v1, v2)∀v1, v2 ∈ V }.

Other familiar facts about the above classical groups are

(1) A concrete description of their Lie algebras. For example, gl(V ) = End(V ) = V ⊗ V ∨;
so(V ) ' ∧2V , sp(W ) ' Sym2(W ).

(2) Explicit description of some nilpotent elements of these Lie algebras
(3) Explicit description of the flag varieties G/P for G a group as above and P a parabolic

subgroup. For example, G is Sp(W ) or O(V ) and P a parabolic subgroup of G, the
varieties G/P can be identified with flags of isotropic subspaces of W or V .

Our first aim in these notes is to give analogous some of the analogous definitions and construc-
tions for exceptional groups. This means:

(1) A definition of (some form of) each (simply-connected) exceptional group G in terms of
stabilizers of concrete tensors;

(2) An explicit description of the Lie algebra g of G, including some unipotent elements;
(3) Some results on the flag varieties G/P .

Let us now give a taste of some of the above elements. As this is an introductory book, we
always work over ground fields k of characteristic 0.

Example 1.1.1 (The group E6). There is a certain 27-dimensional vector space J , that comes
equipped with a homogenous degree three polynomial “determinant” or “norm” map NJ : J → k.
The (simply-connected) group of type E6 can be defined as

E6 = E6(J) = {g ∈ GL(J) : NJ(gX) = NJ(X)∀X ∈ J}.

Moreover, we will write down an explicit E6-equivariant map Φ : J ⊗ J∨ → e6.
Now, there is a quadratic polynomial map # : J → J∨. Call an element x ∈ J singular if

x# = 0. If P is the D5 parabolic in E6, then the flag variety G/P can be identified with the
singular lines in J . Below, we will make all of this explicit, and more.

Let us also give a quick tour of the group E7.
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Example 1.1.2 (The group E7). There is a particular 56-dimensional vector space WJ =
k ⊕ J ⊕ J∨ ⊕ k. The space WJ comes equipped with a symplectic form 〈 , 〉 and a homogeneous
degree four polynimial q : WJ → k. The simply-connected group of type E7 can be defined as

E7 = E7(J) = {g ∈ Sp(WJ ; 〈 , 〉) : q(gw) = q(w)∀w ∈WJ}.
We’ll define the quartic form q explicitly and do calculations with it.

Another familiar aspect for the classical group SL2(R) is that it acts on the upper half plane
h = {z = x+ iy : x, y ∈ R, y > 0} by linear fractional transformations: If γ =

(
a b
c d

)
∈ SL2(R) and

z ∈ h, then γz = az+b
cz+d . Using this action, one can define holomorphic modular forms for SL2.

There is a parallel story for a group E7(J)(R) for a particular J . Namely, there is an upper
half space hJ = {z = x + iy : x, y ∈ J, y > 0} for a notion of positive-definiteness y > 0 in J , and
the group E7(J) acts on hJ by a sort of exceptional linear fractional transformations. We’ll define
this action and the corresponding notion of holomorphic modular forms for E7(J).

We’ll also explicitly define E8, e8, check the Jacobi identity on e8 and compute the Killing form.

1.2. Bhargava’s Higher Composition Laws. The second part of these notes concerns some
results of Bhargava [Bha04a, Bha04b]. We give now some flavor of what we’ll discuss.

To set the stage, recall Gauss composition, which is a bijection between SL2(Z)-equivalence
classes of integral primitive binary quadratic forms of discriminant D < 0 and the class group

Cl(RD) where RD = Z⊕ ZD+
√
D

2 is the quadratic order of discriminant D:

SL2(Z)\
{
ax2 + bxy + cy2 : b2 − 4ac = D < 0, a, b, c ∈ Z and gcd(a, b, c) = 1

}
↔ Cl(RD).

Bhargava found many generalizations of this classical result of Gauss. The prototypical exam-
ples is essentially a bijection between SL2(Z)3 orbits of “cubes” of discriminant D, i.e., elements of
the 8-dimension Z-modular Z2 ⊗ Z2 ⊗ Z2 where a certain degree four “discriminant” polynomial
equals D, and triples of ideal classes in Cl(RD) whose product is trivial:

SL2(Z)3\(Z2 ⊗ Z2 ⊗ Z2)disc=D ess.↔ (RD, I1, I2, I3 : I1I2I3 = (1))

Write RD = Z⊕ Zτ , and suppose I1 = Zα1 ⊕ Zα2, I2 = Zβ1 ⊕ Zβ2, I3 = Zγ1 ⊕ Zγ2. Because
the product I1I2I3 = (1), the product

(1) αiβjγk = cijk + aijkτ

for certain integers aijk, cijk. Here i, j, k ∈ {1, 2}. Following [Bha04a], the map from triples of
ideal classes to Z2 ⊗ Z2 ⊗ Z2 sends (RD, I1, I2, I3) to the 2× 2× 2 “box” (aijk).

A key step in the proof is that the above map induces the desired bijection is that given a box
(aijk) with discriminant D, there exists an essentially unique set of integers cijk and ideals I1, I2, I3

so that (1) holds.
We’ll explain this proof of this result of Bhargava, with special attention to this key step. And

we’ll do so from the point of view of exceptional algebra. To give just a hint why there might be
some connection, note that the vector space W8 = Q2⊗Q2⊗Q2 has a SL2(Q)3-invariant symplectic
form, and the invariant quartic form, the discriminant, already mentioned. This is just like the
space WJ that we mentioned can be used to define E7(J). Indeed, W8 with its SL2(Q)3-action is
a sort of degenerate analogue of the space WJ used to define E7(J).

1.3. Modular forms on exceptional groups. The final part of the notes concerns the so-
called modular forms on quaternionic exceptional groups.

Recall that a classical holomorphic level one modular form of weight ` for SL2 is a holomorphic
function f : h→ C satisfying

(1) f(γz) = (cz + d)`f(z) for all γ =
(
a b
c d

)
∈ SL2(Z)
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(2) the SL2(Z)-invariant function |y`/2f(z)| has moderate growth.

These modular forms have a classical Fourier expansion

(2) f(z) =
∑
n≥0

af (n)e2πinz

with the Fourier coefficients af (n) ∈ C. Sometimes these Fourier coefficients are even in Z,Q, or

Q.
One might reasonably ask if there is any parallel theory of very special automorphic forms on

an exceptional group, such as (split) G2. It turns out that there is, and this notion was singled out
by Gan-Gross-Savin [GGS02] and Gross-Wallach [GW96].

To say a little bit about the definition, first note that one can replace the modular form f with
the function φf : SL2(Z)\SL2(R) → C defined as φf (g) = j(g, i)−`f(g · i), where j(

(
a b
c d

)
, z) =

cz + d. The function φf satisfies

(1) φf (gkθ) = e−iθ`φf (g) for all g ∈ SL2(R) and kθ =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ SO(2)

(2) DCR,`φf ≡ 0, for a certain linear differential operator DCR,`, that corresponds to the fact
that f satisfies the Cauchy-Riemann equations.

The definition of modular forms on G2–or more generally, a “quaternionic” exceptional group–is
similar to the conditions on φf just enumerated.

Fix an integer ` ≥ 1. A modular form on G2 of weight ` is a function of moderate growth
φ : G2(Z)\G2(R)→ Sym2`(C2) satisfying

(1) φ(gk) = k−1·φ(g) for all g ∈ G2(R) and k ∈ K = (SU(2)×SU(2))/µ2 the maximal compact
subgroup of G2(R). Here, on the right of this equation, K is acting on Sym2`(C2) by
projection to the first (long-root) factor.

(2) D`φ ≡ 0 for a certain first-order linear differential operator D`.

Unlike the case of SL2, the symmetric space G2(R)/K does not have a complex structure.
So, even though one can make the above definition, there is no a priori reason to believe that
these modular forms might behave analogously to the classical holomorphic modular forms recalled
above. Nevertheless, [GGS02],[GW96] and [Wal03] defined these modular forms and defined a
notion of some Fourier coefficients of them.

One theorem that we’ll discuss [Pol20a] is that these modular forms have a robust, Z-normalized
Fourier expansion similar to the expansion (2) above. We’ll also prove that there exist cusp forms
on G2 all of whose Fourier coefficients are in Z or Q [Pol20d]. Moreover, we’ll define modular
forms on general quaternionic exceptional groups–including the real Lie group known as E8,4–and
explicitly construct some modular forms on this group [Pol20b, Pol20c].
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Part 1

The exceptional Lie algebras and Lie groups





CHAPTER 1

The octonions and G2

1. Quaternion algebras

Some references:

(1) [GS17] Chapter 1
(2) [GL09]

We begin by defining quaternion algebras.
Suppose k is a field.

Definition 1.0.1. A quaternion algebra of k is rank four associative k-algebra B with unit
that satisfies the following properties: There exists a k-linear order-reversing involution u 7→ u∗

(1) such that u = u∗ if and only if x ∈ k · 1
(2) tr(u) = u+ u∗ and n(u) = uu∗ are in k for all u ∈ B
(3) the quadratic form n : B → k is non-degenerate.

Note that the first condition implies the second.
When working over rings, instead of fields, and when one drops the condition that the quadratic

form n be non-degenerate, then one adds the condition

• left multiplication by u on B has trace 2 tr(u)

Example 1.0.2. The two-by-two matrix algebra M2(k) is a quaternion algebra, with ∗ as(
a b
c d

)∗
=
(
d −b
−c a

)
.

Claim 1.0.3. The norm on a quaternion algebra B is multiplicative, i.e., n(xy) = n(x)n(y).

The proof is immediate.
There is another definition that is more concrete.

Definition 1.0.4. Given a, b ∈ k×, define Ba,b as the four-dimensional associative k-algebra
with basis 1, i, j, k = ij satisfying i2 = a, j2 = b, ij = −ji. An involution ∗ on Ba,b is defined as
u = w + xi+ yj + zk 7→ u∗ = w − xi− yj − zk, where w, x, y, z ∈ k.

Theorem 1.0.5. The four-dimensional algebra Ba,b is a quaternion algebra, and every quater-
nion algebra arises in this way.

Proof. We first explain that Ba,b satisfies the axioms stated above. To do this, we must
compute uu∗. One obtains

uu∗ = (w + xi+ yj + zk)(w − xi− yj − zk)

= w2 − x2(i2)− y2(j2)− z2(k2)− xy(ij + ji)− yz(jk + kj)− zx(ki+ ik)

= w2 − ax2 − by2 + abz2.

One must also verify that this map ∗ satisfies (xy)∗ = y∗x∗.
For the converse direction, let ( ) be the bilinear form associated to the norm form n. Thus

(u, v) = n(u+ v)− n(u)− n(v) = uv∗ + vu∗.
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By assumption this is non-degenerate. Let 1, i, j, k′ be an orthogonal basis of B with respect to
this bilinear form, and set k = ij.

We claim ij = −ji, i2 = a, j2 = b form some a, b ∈ k×, and that 1, i, j, k is a basis of
B. For the first part, note that 0 = (1, i) = i∗ + i so that i∗ = −i and similarly for j. Then
i2 = −ii∗ = −n(i) ∈ k× and simiarly for j. Finally, to see that 1, i, j, ij is a basis, we check that
k = ij is orthogonal to 1, i, j. We leave that as an exercise. �

Exercise 1.0.6. Complete the above proof by checking the following:

• The map ∗ on Ba,b satisfies (uv)∗ = v∗u∗.
• If 1, i, j, k′ is an orthogonal basis of a quaternion algebra B, then k = ij is orthogonal to

1, i, j.

Another way of constructing quaternion algebras: This is called the “doubling” or the Cayley-
Dickson construction. Suppose E/k is a quadratic etale algebra with nontrivial involution σ. define
BE,γ = E ⊕ Ej with multiplication induced by jyj−1 = σ(y) for y ∈ E and j2 = γ ∈ k×. In other
words, we define a multiplication on E2 as

(x1 + y1j)(x2 + y2j) = (x1x2 + γσ(y2)y1) + (y2x1 + y1σ(x2))j.

Define an involution on BE,γ as (x+ yj)∗ = σ(x)− jσ(y) = σ(x)− yj.

Proposition 1.0.7. The algebra just constructed is a quaternion algebra, and every quaternion
algebra arises in this way.

Proof. We first verify that BE,γ is a quaternion algebra. For this, let 1, i be an orthogonal
basis of E. Then σ(i) = −i and i2 = a for some a ∈ k×. We have ji = σ(i)j = −ij. Finally,
j2 = γ. Thus BE,γ ' Ba,γ so is a quaternion algebra.

For the converse direction, suppose B = Ba,b. Set E = k⊕ ki = k[x]/(x2− a). Let γ = b. Then
one verifies quickly that Ba,b = BE,γ . �

2. Octonion algebras

References:

(1) [SV00]

The first exceptional algebraic structure we encounter is the octonions.
We begin with a definition. Suppose k is a field.

Definition 2.0.1. Suppose C is a not-neccessarily-associative k algebra with unit 1, and that
C comes equipped with non-degenerate quadratic form nC : C → k. Then C is said to be a
composition algebra if nC is multiplicative, i.e., nC(xy) = nC(x)nC(y) for all x, y ∈ C.

Composition algebras can be classified, and in fact are always dimension 1, 2, 4 or 8 over the
ground field. Every dimension four composition algebra is a quaternion algebra.

There is a way of defining an involution ∗ on a composition algebra, as follows. Let (x, y) =
nC(x + y) − nC(x) − nC(y) be the non-degenerate bilinear form associated to nC . Note that 1
satisfies (1, 1) = 2 6= 0. Let C0 be the perpendicular space to 1 under the bilinear form. Define ∗
on C as (x1 + y)∗ = x− y if x ∈ k and y ∈ C0. In other words,

z∗ = (z, 1)1− z
for z ∈ C.

Note that z + z∗ ∈ k · 1 for all z ∈ C. Also note that nC(z) = nC(z∗) for all z ∈ C.

Theorem 2.0.2. The map ∗ satisfies
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(1) z∗z = nC(z) for all z ∈ C.
(2) Moreover, ∗ is an algebra involution, i.e., (xy)∗ = y∗x∗ for all x, y ∈ C.

We’ll prove this theorem below.

Definition 2.0.3. An octonion algebra Θ is an eight-dimensional composition algebra.

Octonion algebras exist. We give two different constructions, called the Zorn model and the
Cayley-Dickson construction.

Definition 2.0.4 (The Zorn model). Denote by V3 the three-dimensional defining representa-
tion of SL3 and by V ∗3 its dual representation. Denote by Θ the set of two-by-two matrices ( a vφ d )
with a, d ∈ k, v ∈ V3 and φ ∈ V ∗3 with multiplication(

a v
φ d

)(
a′ v′

φ′ d′

)
=

(
aa′ + φ′(v) av′ + d′v − φ ∧ φ′

a′φ+ dφ′ + v ∧ v′ φ(v′) + dd′

)
.

The involution ∗ is

(
a v
φ d

)∗
=

(
d −v
−φ a

)
and the norm is nΘ(

(
a v
φ d

)
) = ad− φ(v).

The Cayley-Dickson construction starts with a quaternion algebra B and an element γ ∈ k×,
and defines Θ = B ⊕B with multiplication as follows.

Definition 2.0.5. Let ∗ denote the involution on the quaternion algebra B. Then the multi-
plicaton on Θ = B ⊕B is

(x1, y1)(x2, y2) = (x1x2 + γy∗2y1, y2x1 + y1x
∗
2).

The involution ∗ on Θ is (x, y)∗ = (x∗,−y) and the norm is nΘ((x, y)) = nB(x)− γnB(y).

We’ll check below that the Cayley-Dickson construction and the Zorn model produces compo-
sition algebras.

Proposition 2.0.6. The Zorn model is a special case of the Cayley-Dickson construction, with
B = M2(k) and γ = 1.

Proof. The following map induces an isomorphism:((
a11 a12

a21 a22

)
,

(
m11 m12

m21 m22

))
7→
(

a11 a12e1 +m11e2 −m21e3

a21e
∗
1 +m22e

∗
2 +m12e

∗
3 a22

)
.

We have

(a,m)(a′,m′) =
(

( a11 a12a21 a22 )
(
a′11 a

′
12

a′21 a
′
22

)
+
(

m′22 −m′12
−m′21 m′11

)
(m11 m12
m21 m22 ) ,

(
m′11 m

′
12

m′21 m
′
22

)
( a11 a12a21 a22 ) + (m11 m12

m21 m22 )
(

a′22 −a′12
−a′21 a′11

))
.

It is a simple but tedious check that the above map induces an isomorphism. �

2.1. Proof of Theorem 2.0.2. We follow Springer-Veldkamp [SV00] to prove this theorem.
We also prove various useful facts and identities along the way.

To prove Theorem 2.0.2, we’ll require several lemmas.

Lemma 2.1.1. Suppose C is a composition algebra. Then

(1) (x1y, x2y) = nC(y)(x1, x2) for all x1, x2, y ∈ C
(2) (xy1, xy2) = nC(x)(y1, y2) for all x, y2, y2 ∈ C
(3) (x1y1, x2y2) + (x2y1, x1y2) = (x1, x2)(y1, y2) for all x1, x2, y1, y2 ∈ C.

Proof. Consider n((x1+x2)y) to prove that (x1y, x2y) = n(y)(x1, x2). Similarly, n(xy1, xy2) =
n(x)(y1, y2). Linearize to obtain (x1y1, x2y2) + (x2y1, x1y2) = (x1, x2)(y1, y2). �

We can now prove part 1 of Theorem 2.0.2:
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Proof of Theorem 2.0.2 (1). . To prove that zz∗ = n(z), compute the inner product of
both sides with an arbitrary y ∈ C. Then

(y, zz∗) = (y, (1, z)z − z2)

= (1, z)(y, z)− (y, z2)

= (y, z2) + (zy, z)− (y, z2)

= (zy, z)

= n(z)(y, 1).

�

We therefore have:

Lemma 2.1.2. For all x, y, z in a composition algebra C:

(1) The quadratic equation z2 − (z, 1)z + nC(z) = 0 holds;
(2) xy + yx− (x, 1)y − (y, 1)x+ (x, y) = 0.

Proof. The first statement is equivalent to z∗z = nC(z) and the second follows from the first
by linearization. �

Proof of Theorem 2.0.2 (2). Let’s now compute y∗x∗. One has

y∗x∗ = ((1, y)− y)((1, x)− x)

= (1, x)(1, y)− (1, y)x− (1, x)y + yx

= (1, xy) + (x, y)− (1, y)x− (1, x)y + yx

= (1, xy)− xy
= (xy)∗.

�

We also record some identities we’ll need later:

Lemma 2.1.3 ([SV00] Lemma 1.3.2). One has

(1) (xy, z) = (y, x∗z)
(2) (xy, z) = (x, zy∗)
(3) (xy, z∗) = (yz, x∗).

Proof. One has

(y, x∗z) = (y, (x, 1)z − xz)
= (x, 1)(y, z)− (y, xz)

= (xy, z) + (y, xz)− (y, xz)

= (xy, z).

The other identities are left as an exercise. �

Corollary 2.1.4. One has z∗(zy) = n(z)y.

Proof. Pair the LHS with an arbitrary w ∈ C. Then

(w, z∗(zy)) = (zw, zy) = n(z)(w, y) = (w, n(z)y).

�
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2.2. The Cayley-Dickson and Zorn constructions.

Proposition 2.2.1. The Zorn model and the Cayley-Dickson construction define octonion al-
gebras, i.e., the norms are multiplicative.

Proof. It suffices to check that the Cayley-Dickson construction produces a composition al-
gebra; however, we check both the Zorn model and the CD construction anyway. First, consider
the Cayley-Dickson construction. One has

nΘ((x1, y1)(x2, y2)) = nB(x1x2 + γy∗2y1)− γnB(y2x1 + y1x
∗
2).

Expanding the RHS gives

nB(x1x2) + γ(x1x2, y
∗
2y1) + γ2nB(y1y2)− γnB(y2x1)− γ(y2x1, y1x

∗
2)− γnB(y1x2).

We claim that (x1x2, y
∗
2y1) = (y2x1, y2x

∗
2). Given this, the multiplicativity follows. For this latter

identity, note that we already know that B is a composition algebra, so we can apply identities
proved for C. We have

(x1x2, y
∗
2y1) = (y2x1x2, y1) = (y2x1, y1x

∗
2)

as desired.
Let’s also check that directly that the Zorn model gives a composition algebra. The norm of

the product of u and u′ is

(aa′ + φ′(v))(dd′ + φ(v′))− (a′φ+ dφ′ + v ∧ v′, av′ + d′v − φ ∧ φ′).

This is

ada′d′+aa′φ(v′)+dd′φ′(v)+φ′(v)φ(v′)−
(
aa′φ(v′) + a′d′φ(v) + adφ′(v′) + dd′φ′(v)− (v ∧ v′, φ ∧ φ′)

)
.

Cancelling gives

nΘ(uu′) = ada′d′ + φ′(v)φ(v′)− a′d′φ(v)− adφ′(v′) + (v ∧ v′, φ ∧ φ′)
= (ad− φ(v))(a′d′ − φ′(v′)) + (v ∧ v′, φ ∧ φ′)− φ(v)φ′(v′) + φ′(v)φ(v′).

�

3. The group G2

Suppose Θ is an octonion algebra. The group G2 is defined as the automorphisms of Θ. The
exact linear algebraic group one gets depends upon Θ.

Octonion algebras posess lots of automorphisms. It is clear that SL3 acts on the Zorn model.
One can also define an action of B1 ×B1 on the Cayley-Dickson construction:

Suppose g, h ∈ B1. Define

(g, h) · (x, y) = (gxg−1, hyg−1).

Claim 3.0.1. This action defines a map B1 × B1/µ2 → G2, i.e., the action preserves the
multiplication and the conjugation.

The proof is a simple direct check.
So, we have a definition of G2, and we know the definition of G2 produces something nontrivial,

as SL3 ⊆ G2 and (SL2×SL2)/µ2 ⊆ G2, working with the Zorn model.
We will eventually check that G2 has dimension 14 and give very concrete models for its Lie

algebra.

Lemma 3.0.2. The group G2 preserves the quadratic form on Θ.
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3.1. The dimension of G2. The dimension is 14. The idea is that G2 acts transitively on
V nC=−1

7 with stabilizer of u0 :=
(

1 0
0 −1

)
being SL3.

Proposition 3.1.1. The group G2 acts transitively on V n=−1
7 .

We first require the following lemma.

Lemma 3.1.2. SL2 acts (by conjugation) transitively on the matrices with trace 0 and determi-
nant −1.

Proof. We know GL2 acts transitively. So, given a matrix m as in the statement of the lemma,
there exists g ∈ GL2 with gmg−1 = diag(1,−1). But now write g = dg′ with d diagonal and g′ ∈
SL2. Then m′ := g′m(g′)−1 is diagonal with trace 0 and determinant −1. Thus m′ = diag(1,−1)
or diag(−1, 1). Now apply

(
0 1
−1 0

)
to finish the proof. �

Proof of Proposition 3.1.1. The idea is to go back and forth between using the SL3 and
SL2×SL2-action. We handle the most difficult case first: u = ( a vφ d ) with v, φ 6= 0 but φ(v) = 0.
Use the SL3 action to make v = e2 and φ = e∗3. Then, in the CD model, the first component
x = diag(a, d) with tr(x) = 0. Use the SL2 action (and the lemma) to make this anti-diagonal, e.g.
( 0 1

1 0 ). Now we have x with a, d = 0 and φ(v) 6= 1 (because the norm is still −1). Thus from the
SL3 action we can assume v = e1 and φ = e∗1, and we’re done by the lemma.

The other cases are easier, and left to the reader: One first uses the SL3 action to reduce to an
octonion which has the shape (x, 0) in the CD model, then one applies the lemma to finish. �

Lemma 3.1.3. The stabilizer of u0 =
(

1 0
0 −1

)
∈ Θ is SL3.

Proof. It is clear that SL3 is contained in the stabilizer, so we must check the other direction.
For this, let S be the stabilizer, and suppose g ∈ S. Then g fixes ε1 = ( 1 0

0 0 ) and ε2 = ( 0 0
0 1 ) because

g must fix 1.
Let AnnR(εi), AnnL(εi) be the right and left annihilators of the εi, i = 1, 2. Then S must

stabilizer these subspaces of Θ and their intersection. However, ( 0 ∗
0 0 ) = AnnL(ε1)∩AnnR(ε2), and

similarly ( 0 0
∗ 0 ) = AnnR(ε1) ∩ AnnL(ε2). This shows that S preserves the components in the Zorn

model, and then S ↪→ GL3 because S must act on the φ’s as the dual of how it acts on the v’s,
because the quadratic form is preserved.

Finally, to see that S ' SL3, note that the trilinear form tr(x1(x2x3)) is preserved by G2 and
thus by S. However, on the v’s, this trilinear form is the determinant map (v1, v2, v3) = v1∧v2∧v3.
This completes the proof. �

Corollary 3.1.4. The dimension of G2 is 14.

Proposition 3.1.5. The representation V7 of G2 is irreducible.

Proof. Suppose V ⊆ V7 is a G2-module. Then it is an SL3 module, so is a direct sum of pieces
in V7 = 1⊕V3⊕V ∗3 . None of the nonzero subsums are stable under the SL2×SL2 action, however.
So V = V7, as desired. �

Lemma 3.1.6. The center of G2 consists only of the identity.

Proof. Inspired by SV Lemma 2.3.2. If you commute with SL3, and preserve the quadratic

form, you must be of the form ( a vφ d ) 7→
(

λa µv
µ−1φ λ−1d

)
. If you also commute with SL2×SL2, we see

λ = µ = µ−1 = λ−1 = ±1. But we cannot have −1 because 1 must be fixed. �

One concludes that G2 is a semisimple group of dimension 14.
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3.2. The orthogonal model of the Lie algebra. The Lie algebra so(V ) is ∧2V . It acts on
V as

(u ∧ v) · w = (v, w)u− (u,w)v.

The Lie bracket is

[u1 ∧ v1, u2 ∧ v2] = (v1, u2)u1 ∧ v2 − (v1, v2)u1 ∧ u2 − (u1, u2)v1 ∧ v2 + (u1, v2)v1 ∧ u2.

The map V7 ⊗ V7 → V7 given by Im(v1v2) is alternating. It thus induces a map ∧2V7 → V7.
We denote by g the kernel of this map.

Lemma 3.2.1. The map ∧2V7 → V7 is surjective, and thus g has dimension 14.

Proof. The map is nonzero, and the image is G2 stable. �

Theorem 3.2.2. The subspace g of ∧2V7 is closed under the Lie bracket of ∧2V7 = so(V7). It
is the Lie algebra of G2.

Before proving this theorem, we give an explicit basis for g, and make some special notation
which we will use throughout. First, denote by e1, e2, e3 a fixed basis of V3, and write e∗1, e

∗
2, e
∗
3 for

the basis of V ∨3 dual to the ei. Set u0 =
(

1
−1

)
∈ V7. We will abuse notation and also let ei, e

∗
j

denote elements in V7. Thus (ei, e
∗
j ) = −δij , (u0, u0) = −2, and (u0, ei) = (u0, e

∗
j ) = 0 for all i, j.

We set Ekj = e∗j ∧ ek, vj = u0 ∧ ej + e∗j+1 ∧ e∗j+2, and δj = u0 ∧ e∗j + ej+1 ∧ ej+2 (indices taken

modulo three). One checks immediately from the definition of multiplication in Θ that the elements
vj and δj are in the kernel of ∧2V7 → V7, and thus in g. The same goes for Ekj so long as j 6= k.
A sum α1E11 + α2E22 + α3E33 is in g if and only if α1 + α2 + α3 = 0.

The above elements span g. We write

h = {α1E11 + α2E22 + α3E33 : α1 + α2 + α3 = 0}.

Lemma 3.2.3. The subspace g is irreducible as a G2-representation.

Proof. As an SL3 representation, g is

∧2(1 + V3 + V ∨3 )− (1 + V3 + V ∨3 ) = (V3 ⊗ V3)0 + V3 + V ∨3 .

As an SL2×SL2-representation,

∧2(S2(V2) � 1 + V2 � V2) = ∧2(S2(V2)) � 1 + ∧2(V2 � V2) + (S2(V2)⊗ V2) � V2

= S2(V2) � 1 + S2(V2) � 1 + 1 � S2(V2) + S3(V2) � V2 + V2 � V2.

Consequently,
g = S3(V2) � V2 + S2(V2) � 1 + 1 � S2(V2).

By using the action subspaces written down above, one can verify that none of the SL2×SL2

subsums is actually SL3-invariant. We omit this, however. �

Proof of Theorem. ∧2V7 is g⊕ V7 as a direct sum of irreducible G2-representations. How-
ever, it must contain the G2-stable, 14-dimensional subspace Lie(G2). Thus, Lie(G2) = g and is
irreducible as a G2-representation. Consequently, G2 is simple. �

The subalgebra h is a Cartan subalgebra of g. The Cartan subalgebra h acts on Ekj by αk−αj ,
i.e.,

[
∑
i

αiEii, Ekj ] = (αk − αj)Ekj .

These are the long roots for h. Together with h, the Ejk span the Lie algebra sl3. The Cartan h
acts on vj via αj and δj via −αj . These are the short roots.

One has the following Lie bracket relations, which can be checked easily.
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• [δj−1, vj ] = 3Ej,j−1

• [vj−1, δj ] = −3Ej−1,j

• [δj−1, δj ] = 2vj+1

• [vj−1, vj ] = 2δj+1

• [δj , vj ] = 3Ejj − (E11 + E22 + E33).

All indices here are taken modulo 3. We will choose a positive system on g by letting E12 and v2

be the positive simple roots.

3.3. The Z/3-graded model of the Lie algebra. Abstractly, g = g2 = sl3 ⊕ V3 ⊕ V ∨3 ,
and this is a Z/3-grading. In fact, all the (split) exceptional Lie algebras have Z/3-grading that
generalizes this one. See [Rum97]. In this Z/3-model, the Lie bracket is given as follows:

(1) the commutators [sl3, V3] and [sl3, V
∨

3 ] are given by the action of sl3 on V3 and V ∨3 ;
(2) the commutators [V3, V3] and [V ∨3 , V

∨
3 ] are given by1 [x, y] = 2x∧ y ∈ V ∨3 for x, y ∈ V3 and

[γ, δ] = 2γ ∧ δ ∈ V3 for γ, δ ∈ V ∨3 ;
(3) if x ∈ V3 and γ ∈ V ∨3 then2 [γ, x] = 3x⊗ γ − (x, γ)13, which is in sl3.

The elements Eij , vj , δk of g defined above are simply the standard basis vectors for sl3, V3 and
V ∨3 in the decomposition g = sl3 ⊕ V3 ⊕ V ∨3 .

4. Triality and the group Spin8

Use the norm form on Θ to define SO(Θ).
Define the group Spin8. Let (x, y, z) = tr(x(yz)) be the trilinear form on Θ.

Definition 4.0.1. The group Spin8: The set of triples (g1, g2, g3) ∈ SO(Θ)3 such that (g1x1, g2x2, g3x3) =
(x1, x2, x3) for all xj ∈ Θ.

Reference: [KPS94, Proposition 4.8].
We omit a proof that Spin8 is connected.
A warm up:

Lemma 4.0.2. The kernel of the map Spin8 → SO(Θ) is µ2.

Proof. Say g1 = 1. Then we quickly obtain (g2y)(g3z) = yz for all y, z ∈ Θ. Now taking
y = 1, z = 1, one gets (g21)(g31) = 1. Now (g2y)(g31) = y, from which one obtains g2y = y(g21).
Similarly, g3z = (g31)z. Let w = g21, w−1 = g31. Then we have (yw)(w−1z) = yz for all y, z ∈ Θ.
We want to check that this cannot happen unless w is in the center of Θ. But replacing z by wz
we obtain (yw)z = y(wz). The lemma now follows from Exercise 4.0.3.

�

Exercise 4.0.3. Prove that if w ∈ Θ satisfies (yw)z = y(wz) for all y, z ∈ Θ, then w ∈ k · 1.
For this, suppose z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) in the Cayley-Dickson model. Compute
that {z1, z2, z3} := z1(z2z3)− (z1z2)z3 = (W1,W2) satisfies

W1 = γ[x1, y
∗
3y2] + γ[x∗2, y

∗
3y1] + γ[x3, y

∗
2y1]

and

W2 = y3[x2, x1] + y2[x∗3, x1] + y1[x∗3, x
∗
2] + γ(y1y

∗
2y3 − y3y

∗
2y1).

We now prove the “Principle of Local Triality”.

1The 2 here is 1J × 1J = 21J
2The 3 here is trJ(1J)
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Theorem 4.0.4. Given X ∈ ∧2(Θ) = so(Θ), there exists Y, Z ∈ so(Θ) so that

X(ab) = (Y a)b+ a(Zb)

for all a, b ∈ Θ.

For the proof, we paraphrase the argument in [Jac71, pages 8-9].

Corollary 4.0.5. The map Spin8 → SO(Θ) induces an isomorphism on Lie algebras.

Proof. The principle of local triality, as stated above, implies the surjectivity: If (X,Y, Z) is
a triple as above, then (∗X∗, Y, Z) is in the Lie algebra Lie(Spin8). This follows from the fact that
the trilinear form (c, a, b) = (c∗, ab).

The injectivity follows from the computation of the kernel above. �

Lemma 4.0.6. The alternative identity holds:

c(ab) + (ab)c = (ca)b+ a(bc).

Proof. This follows from the first Moufang identity (SV Proposition 1.4.1), which states

(ax)(ya) = a((xy)a).

Indeed, one linearizes this with z, 1 in place of a, a. To prove this Moufang identity, we follow SV
exactly: We take the inner product of each side with an aribitrary elements z ∈ C, and one obtains

((ax)(ya), z) = (ya, (x∗a∗)z)

= (y, x∗a∗)(a, z)− (yz, (x∗a∗)a)

= (y, x∗a∗)(a, z)−N(a)(yz, x∗).

Similarly,

(a((xy)a), z) = ((xy)a, a∗z)

= (xy, a∗)(a, z)− ((xy)z, a∗a)

= (xy, a∗)(a, z)−N(a)(xy, z∗).

�

Proof of PLT. Note that we have ∧2(Θ) = ∧2(1 + V7) = 1 ⊗ V7 + ∧2V7. The alternative
identity implies the PLT holds for 1⊗ V7. Indeed, if c ∈ V7, then

(c ∧ 1)(x) = c(1, x)− (c, x)1

= c(x+ x∗)− (cx∗ + xc∗)1

= cx+ xc.

(Note that left and right multiplication by an element c ∈ V7 preserves the bilinear form.)
One checks that the subspace of so(Θ) for which the PLT holds is closed under the Lie bracket.

But the bracket induces a surjection (1 ⊗ V7) ⊗ (1 ⊗ V7) → ∧2V7, so the PLT holds for all of
∧2(Θ). �

Exercise 4.0.7. [SV00, Theorem 3.5.5] Suppose X = a ∧ b ∈ ∧2Θ, so that X(x) = (b, x)a −
(a, x)b. Prove with Y = 1

2(`a`b∗ − `b`a∗) and Z = 1
2(rarb∗ − rbra∗) that the triple X,Y, Z satisfies

local triality. Hint: Check that this formula is correct on V7 ⊗ 1 and on ∧2V7 individually. We
essentially checked it on V7 ⊗ 1 in the proof above. To check it on a ∧ b = 1

2 [b⊗ 1, a⊗ 1], compute
the commutator of the triples (b⊗ 1, `b, rb) and (a⊗ 1, `a, ra).
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CHAPTER 2

Cubic norm structures, F4 and E6

1. Preamble

Suppose C is a composition algebra. Define

J = H3(C) =

X =

 c1 x3 x∗2
x∗3 c2 x1

x2 x∗1 c3

 : c1, c2, c3 ∈ k, x1, x2, x3 ∈ C

 .

We define a cubic norm NJ on J as

(3) NJ(X) = NJ

 c1 x3 x∗2
x∗3 c2 x1

x2 x∗1 c3

 = c1c2c3 − c1nC(x1)− c2nC(x2)− c3nC(x3) + trC(x1x2x3).

Suppose C = Θ is the octonions. Then the group E6 is defined as

E6 = E6(H3(Θ)) = {g ∈ GL(H3(Θ)) : NJ(gX) = NJ(X)∀X ∈ H3(Θ)}.

The group F4 is defined as the subgroup of E6 that fixes 1J =

 1
1

1

 . Note that we have

an embedding Spin8 = Spin(Θ)→ F4 ⊆ E6 as follows: If g = (g1, g2, g3) ∈ Spin(Θ), then define

gX = g

 c1 x3 x∗2
x∗3 c2 x1

x2 x∗1 c3

 =

 c1 g3x3 (g2x2)∗

(g3x3)∗ c2 g1x1

g2x2 (g1x1)∗ c3

 .

It is immediate from (3) that this action of Spin(Θ) fixes the norm on J = H3(Θ) and fixes the
element 1J .

2. Cubic norm structures

Suppose k is a field of characteristic 0 and J is a finite dimensional k vector space. That J is
a cubic norm structure means that it comes equipped with a cubic polynomial map N : J → k, a
quadratic polynomial map # : J → J , an element 1J ∈ J , and a non-degenerate symmetric bilinear
pairing ( , ) : J⊗J → k, called the trace pairing, that satisfy the following properties. For x, y ∈ J ,
set x× y = (x+ y)# − x# − y# and denote ( , , ) : J ⊗ J ⊗ J → k the unique symmetric trilinear
form satisfying (x, x, x) = 6N(x) for all x ∈ J . Then

(1) N(1J) = 1, 1#
J = 1J , and 1J × x = (1J , x)− x for all x ∈ J .

(2) (x#)# = N(x)x for all x ∈ J .
(3) The pairing (x, y) = 1

4(1J , 1J , x)(1J , 1J , y)− (1J , x, y).

(4) One has N(x+ y) = N(x) + (x#, y) + (x, y#) +N(y) for all x, y ∈ J .

One should see [McC04] for a thorough treatment of cubic norm structures.
There is a weaker notion of a cubic norm pair. In this case, the pairing ( , ) is between J and

J∨, the linear dual of J , the adjoint map # takes J → J∨ and J∨ → J , and each J, J∨ have a
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norm map NJ : J → F and NJ∨ : J∨ → F . The adjoints and norms on J and J∨ satisfy the same
compatibilities as above in items (2) and (4).

If J is a cubic norm structure, we define the group

MJ = {(λ, g) ∈ GL1×GL(J) : N(gX) = λN(X) for all X ∈ J},
the group of all linear automorphisms of J that preserve the norm N up to scaling. Thus if x ∈ J
with N(x) 6= 0, the map Ux defines an element of MJ . We set M1

J the subgroup of MJ consisting of
those g with λ(g) = 1 and we set AJ the subgroup of M1

J that also stabilzes the element 1J ∈ J . It
follows that AJ preserves the bilinear pairing ( , ): if a ∈ AJ , then (ax, ay) = (x, y) for all x, y ∈ J .
The group AJ is the automorphism group of J . If a ∈ AJ , then one also has (ax)× (ay) = a(x× y)
for all x, y ∈ J .

2.1. Examples. We make J = H3(C) into a cubic norm structure, with the following choice
of data:

(1) NJ(X) = NJ

 c1 x3 x∗2
x∗3 c2 x1

x2 x∗1 c3

 = c1c2c3− c1nC(x1)− c2nC(x2)− c3nC(x3) + trC(x1x2x3).

(2) X# =

 c2c3 − nC(x1) x∗2x
∗
1 − c3x3 x3x1 − c2x

∗
2

x1x2 − c3x
∗
3 c1c3 − nC(x2) x∗3x

∗
2 − c1x1

x∗1x
∗
3 − c2x2 x2x3 − c1x

∗
1 c1c2 − nC(x3)


(3) The pairing (X,X ′), in obvious notation, is

(X,X ′) = c1c
′
1 + c2c

′
2 + c3c

′
3 + (x1, x

′
1) + (x2, x

′
2) + (x3, x

′
3).

Theorem 2.1.1. With data described above, J = H3(C) is a cubic norm structure.

Proof. One immediately check that 1# = 1.
We now check that (X#)# = N(X)X. To see this, we compute the c1 and x1 coefficient of

(X#)#, the other coefficients being similar. The c1 coefficient is

(c3c1 − n(x2))(c1c2 − n(x3))− n(x2x3 − c1x
∗
1)

which one quickly computes to be c1N(x). The x1 coefficient gives

(x1x2 − c3x
∗
3)(x3x1 − c2x

∗
2)− (c2c3 − n(x1))(x∗3x

∗
2 − c1x1).

Using the identity (ba)a∗ = n(a)b this becomes

(c1c2c3 − c1n(x1)− c2n(x2)− c3n(x3))x1 + (x1x2)(x3x1) + n(x1)x∗3x
∗
2.

But now the first Moufang identity gives

(x1x2)(x3x1) + n(x1)x∗3x
∗
2 = x1((x2x3)x1) + x1(x∗1(x∗3x

∗
2)) = x1(tr((x2x3)x1))

yielding the result.
To verify N(x+ x′) = N(x) + (x#, x′) + (x, (x′)#) +N(x′), one reduces quickly to computing

the coefficient of ε in N(x+ εx′). One obtains

1

2
(x, x, x′) = c′1c2c3 + c1c

′
2c3 + c1c2c

′
3 − c1(x1, x

′
1)− c′1n(x1)− c2(x2, x

′
2)− c′2n(x2)− c3(x3, x

′
3)− c′3n(x3)

+ (x′1, x2, x3) + (x1, x
′
2, x3) + (x1, x2, x

′
3).

On the other hand

(x#, x′) = c′1(c2c3 − n(x1)) + c′2(c3c1 − n(x2)) + c′3(c1c2 − n(x3))

+ (x′1, x
∗
3x
∗
2 − c1x1) + (x′2, x

∗
1x
∗
3 − c2x2) + (x′3, x

∗
2x
∗
1 − c3x3).

Comparing quickly gives equality.
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Linearizing the identity just proved gives (x, y, z) = (x × y, z). Using this, to check that
(x, x′) = 1

4(1, 1, x)(1, 1, x′) − (1, x, x′), it is equivalent to check (x, x′) = (1, x)(1, x′) − (1, x × x′).
Now

x× x′ =

 c2c
′
3 + c′2c3 − (x1, x

′
1) ∗ ∗

∗ c3c
′
1 + c′3c1 − (x2, x

′
2) ∗

∗ ∗ c1c
′
2 + c′1c2 − (x3, x

′
3)

 .

The desired equality now follows easily. �

Example 2.1.2. The basic examples: J = k, J = E an etale cubic algebra, J = k × C with C
an associative composition algebra.

More generally,

Example 2.1.3. J = k×S with S a pointed quadratic space. In more detail, take 1S ∈ S with
q(1S) = 1. Define an involution ι on S fixing 1S and acting as minus the identity on (1S)⊥. The norm
on J is NJ(β, s) = βqS(s), one has 1J = (1, 1S), and the adjoint map is (β, s)# = (qS(s), βι(s)).
Finally, the pairing is ((β, t), (β′, t′)) = ββ′ + (t, ι(t′)).

Proposition 2.1.4. With data as defined above J = k × S is a cubic norm structure.

Proof. It is clear that NJ(1J) = 1 and 1#
J = 1J . Note that ι preserves the quadratic form

qS ,i.e., qS(ι(s)) = qS(s) for all s ∈ S. One computes

((β, s)#)# = (qS(s), βι(s))#

= (β2qS(ι(s)), qS(s)βs)

= βqS(s)(β, s).

We compute

NJ((β1 + εβ2, s1 + εs2) = (β1 + εβ2)qS(s1 + εs2) = β1qS(s1) + ε(β2qS(s1) + β1(s1, s2)) +O(ε2).

On the other hand,

((β1, s1)#, (β2, s2)) = ((qS(s1), β1ι(s1)), (β2, s2))

= β2qS(s1) + β1(s1, s2).

This proves that NJ(x+ y) = NJ(x) + (x#, y) + (y#, x) +NJ(y).
Finally, we must verify (x, y) = (1J , x)(1J , y)−(1J , x×y). So suppose x = (β1, s1), y = (β2, s2).

Then (1J , x) = β1 + (1S , s1) and (1J , y) = β2 + (1S , s2). Moreover,

x× y = ((s1, s2), β1ι(s2) + β2ι(s1))

so that (1J , x× y) = (s1, s2) + β1(1S , s2) + β2(1S , s1). Combining gives

(1J , x)(1J , y)− (1J , x× y) = β1β2 + (1S , s1)(1S , s2)− (s1, s2).

On the other hand, one readily verifies that (1S , s1)(1S , s2)− (s1, s2) = (s1, ι(s2)). The proposition
follows. �

3. The group E6

The group E6 is defined as M1
J for J = H3(Θ). Note that the group Spin8 = Spin(Θ) embeds

in M1
J for this J . In this section, we give some results on the Lie algebra m(J).

We begin by defining an MJ -equivariant map J ⊗ J∨ → m(J). See [Spr62] and [Rum97].
For γ ∈ J∨ and x ∈ J , define the element Φγ,x ∈ End(J) as

Φγ,x(z) = −γ × (x× z) + (γ, z)x+ (γ, x)z.
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Proposition 3.0.1. [Rum97, Equation (9)] One has

(Φγ,x(z1), z2, z3) + (z1,Φγ,x(z2), z3) + (z1, z2,Φγ,x(z3)) = 2(γ, x)(z1, z2, z3)

for all z1, z2, z3 in J . In particular, Φγ,x ∈ m(J).

Lemma 3.0.2. In a cubic norm pair, one has z# × (z × w) = n(z)w + (z#, w)z.

Proof. One starts with the identity (z#)# = N(z)z. Then, replacing z by z + εw and taking
the coefficient of ε, one gets the result. �

Note that Φγ,x(z) = Φγ,z(x). One sets Φ′γ,x = Φγ,x − 2
3(γ, x). Then Φ′γ,x ∈ m(J)0.

Proof of Proposition. By linearization, it suffices to evaluate (z#,Φγ,x(z)). Applying Lemma
3.0.2, one obtains 2(γ, x)N(z). The proposition follows. �

Suppose g ∈ MJ . Let g̃ denote the action of g ∈ MJ on J∨. Recall λ(g) ∈ GL1 so that
NJ(gx) = λ(g)NJ(x) for all x ∈ J .

Proposition 3.0.3. For all x, y ∈ J and γ, µ ∈ J∨ one has

(1) g̃(x× y) = λ(g)−1(gx)× (gy)
(2) NJ∨(g̃γ) = λ(g)−1NJ∨(γ)
(3) g(γ × µ) = λ(g)g̃(γ)× g̃(µ).

If J is a cubic norm structure and g(1J) = 1J so that g commutes with the isomorphism J ' J∨,
then g(x× y) = (gx)× (gy) for all x, y ∈ J .

Lemma 3.0.4. In a cubic norm pair, the set of elements µx#, µ ∈ k and x ∈ J , are Zariski
dense in J∨.

Proof. Indeed, if γ ∈ J∨, set x = γ# then x# = NJ∨(γ)γ. So every element of J∨ with
nonzero norm is of the form µx#. Because NJ∨ is not zero (because its value on 1J∨ is 1), the
elements of nonzero norm are Zariski dense. �

Proof of Proposition 3.0.3. We prove the statements in turn. For the first statement, pair
with an arbitrary element z ∈ J to obtain

(z, g̃(x× y)) = (g−1z, x× y) = (g−1z, x, y)J = λ(g)−1(z, gx, gy)J = (z, λ(g)−1(gx)× (gy)).

For the second statement, applying Lemma 3.0.4, it suffices to verify it for γ = x#. Now

3NJ∨(y#) = (y#, (y#)#) = (y#, NJ(y)y) = 3NJ(y)2

so NJ∨(y#) = NJ(y)2 for all y ∈ J . One now has

NJ(g̃x#) = NJ(λ(g)−1(gx)#) = λ(g)−3N(gx)2 = λ(g)−1N(x)

proving statement two of the proposition.
Statement three of the proposition now follows as the proof of part one, using part two. The

final statement follows from statement one. �

Exercise 3.0.5. Suppose δ ∈ m(J) and µ(δ) is the scalar so that

(δ(z1), z2, z3) + (z1, δ(z2), z3) + (z1, z2, δ(z3)) = µ(δ)(z1, z2, z3)

for all z1, z2, z3 ∈ J . Prove that δ̃(x× y) = −µ(δ)(x× y) + δ(x)× y + x× δ(y) for all x, y ∈ J .

Exercise 3.0.6. Prove that the map Φ : J ⊗ J∨ → m(J) is equivariant, i.e., if g ∈ MJ then
Ad(g)Φγ,x = Φg̃(γ),g(x).
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Proposition 3.0.7. [Spr62, Lemma 1 and Proposition 5]. If γ# = 0 and (γ, v) = 0, then
Φγ,v = Φ′γ,v satisfies Φ2

γ,v(z) = −2(γ, z)γ × v# and Φ3
γ,v = 0. Consequently, Φγ,v is nilpotent.

Similarly, if v# = 0 and (γ, v) = 0, then Φγ,v = Φ′γ,v satisfies Φ2
γ,v(z) = −2(γ# × v, z)v and

Φ3
γ,v = 0. Consequently, Φγ,v is nilpotent.

When J = H3(C) with C an associative composition algebra, one has a map GL3(C) → MJ

given by g acting on X is gXg∗. Here X ∈ H3(C) and g ∈ GL3(C). This gives us a heuristic that
when C = Θ is the octonions, we can think of GE6 = MH3(Θ) as related to “GL3(Θ)”. We’ll make
this relation precise in the rest of this subsection.

For notation, denote ε1 = diag(1, 0, 0), ε2 = diag(0, 1, 0) and ε3 = (0, 0, 1) as elements of H3(C).
Denote by Spin(Θ)′ the group

Spin(Θ)′ = {(g1, g2, g3) ∈ O(Θ)3 : (g1x1, g2x2, g3x3) = (x1, x2, x3)∀xj ∈ Θ}.
Note that we only require the gj to be in O(Θ) as opposed to SO(Θ). Clearly Spin(Θ) ⊆ Spin(Θ)′

and the groups have the same Lie algebra. I don’t know if Spin(Θ) = Spin(Θ)′.

Lemma 3.0.8. Suppose J = H3(Θ). The simultaneous stabilizer of ε1, ε2, ε3 is Spin(Θ)′.

Proof. It is clear that Spin(Θ)′ is contained in this stabilizer. For the converse, suppose g
stabilizes the εi. Then g fixes 1J and thus g is an automorphism of J . We must check that g
preserves the spaces xi(Θ). To see this, note that x1(Θ)’s can be characterized as the image of the
map ε1 × z for z ∈ (kε1 + kε2 + kε3)⊥. The lemma follows. �

We now make some explicit calculations, as given in the following proposition. For x1, x2, x3 ∈
Θ, denote by V (x1, x2, x3) the of J as

V (x1, x2, x3) =

 0 x3 x∗2
x∗3 0 x1

x2 x∗1 0

 .

Proposition 3.0.9. One has

(1) Φε1,V (x1,x2,x3)(ε1) = V (0, x2, x3), Φε1,V (x1,x2,x3)(ε2) = 0 and Φε1,V (x1,x2,x3)(ε3) = 0.
(2) ΦV (x1,x2,x3),ε1(ε1) = 0, ΦV (x1,x2,x3),ε1(ε2) = V (0, 0, x3) and ΦV (x1,x2,x3),ε1(ε3) = V (0, x2, 0).

Proof. Note the identity ε1 × V (x1, x2, x3) = V (−x1, 0, 0) and similarly for ε2, ε3. Also ε1 ×
ε2 = ε3 and similarly for other permutations. From these identities the proposition is a simple
calculation. �

Let T be the torus of MJ that acts as X 7→ diag(t1, t2, t3)X diag(t1, t2, t3).
We can arrange the maps of Proposition 3.0.9 into an A2 root system for T as follows: ΦV (0,0,x3),ε1 ,Φε2,V (0,0,x3) ΦV (0,x2,0),ε1 ,Φε3,V (0,x2,0)

ΦV (0,0,x3),ε2 ,Φε1,V (0,0,x3) ΦV (x1,0,0),ε2 ,Φε3,V (x1,0,0)

ΦV (0,x2,0),ε3 ,Φε1,V (0,x2,0) ΦV (x1,0,0),ε3 ,Φε2,V (x1,0,0)


Note that the elements in the same box are the same map: For example, in the (1, 2) box, both

elements send ε2 to V (0, 0, x3) and annihilate ε1, ε3. Then, the different annihilates all three εk, so
is in spin(Θ). However, T acts on it by t1/t2, so the difference must be 0.

Let t be the Lie algebra of T , so that a triple (t1, t2, t3) ∈ t acts on H3(C) as c1 x3 x∗2
x∗3 c2 x1

x2 x∗1 c3

 7→
 2t1c1 (t1 + t2)x3 (t3 + t1)x∗2

(t1 + t2)x∗3 2t2c2 (t2 + t3)x1

(t3 + t1)x2 (t2 + t3)x∗1 2t3c3

 .
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Define n+(Θ) ' Θ3 as the sum of the maps in the (1, 2), (1, 3) and (2, 3) positions, and define
n−(Θ) ' Θ3 as the sum of the maps in the (2, 1), (3, 1) and (3, 2) positions.

Proposition 3.0.10. Suppose J = H3(Θ). The map n−(Θ)⊕ t⊕ spin(Θ)⊕ n+(Θ)→ m(J) is
a linear isomorphism.

Proof. For the injectivity, note that T acts by different weights on the n−(Θ), n+(Θ), t ⊕
spin(Θ), and that it acts by 1 on this last piece. So, we just must check that the map t⊕spin(Θ)→
m(J) is injective. But for this, one uses the action on the diagonal elements.

For the surjectivity, suppose given Φ ∈ m(J). We will find X ∈ n+(Θ), Y ∈ n−(Θ) and
t ∈ t so that Φ−X − Y − t annihilates ε1, ε2, ε3. Then the proposition follows from Lemma 3.0.8.

To find X, Y and t, first note that because ε#j = 0, one has εj × Φ(εj) = 0. It follows that

Φ(ε1) = µ1ε1 + V (0, x1
2, x

1
3) for some µ1 ∈ k and x1

2, x
1
3 ∈ Θ. Similarly for ε2, ε3. The proposition

now follows easily from Proposition 3.0.9, using that (t1, t2, t3) · ε1 = 2t1ε1. �

Corollary 3.0.11. With J = H3(Θ), dimk m(J) = 79.

See [PWZ19, section 1.5] for the exponential of the n(Θ) action.

4. The group F4

Recall that the group F4 is defined as the group AJ with J = H3(Θ). In this section, we give
some results about the Lie algebra a(J) for general CNS’s J and also some results in the special
case J = H3(Θ).

For a cubic norm structure J , we have an isomorphism J → J∨. We let ι denote this isomor-
phism.

The Jordan product is defined as X ·Y = 1
2{X,Y } where {X,Y } = Φι(1),X(Y ) = Φι(1),Y (X). A

derivation of J is a linear map δ : J → J satisfying δ(A ·B) = δ(A) ·B +A · δ(B) for all A,B ∈ J .
Note that Φι(1),X(Y ) = Φι(1),Y (X) so that {X,Y } = {Y,X}.

Exercise 4.0.1. Verify that {1J , X} = 2X for all X ∈ J . Check that

{X,Y } = X × Y + (1, Y )X + (1, X)Y − (1, X, Y )1.

Use Lemma 4.0.2 to do the computation.

Lemma 4.0.2. For a cubic norm structure J , one has 1J × x = (1J , x)1J − x for all x ∈ J .

Proof. Pair both sides with an arbitrary y ∈ J . �

For J = H3(C), the Jordan product is expressible in terms of the ordinary matrix multiplication.
Namely, {X,Y } = XY +Y X where the products on the right are taken in terms of ordinary matrix
multiplication.

Proposition 4.0.3. Suppose J = H3(C). Then {X,Y } = XY + Y X. In particular, the
element on the RHS is in J .

Proof. By linearization, it suffices to verify that 1
2{X,X} = X2 is in H3(C). One computes

the RHS directly to be

X2 =

 c2
1 + nC(x3) + nC(x2) ∗ ∗

∗ ∗ x∗3x
∗
2 + c2x1 + c3x1

∗ x2x3 + c2x
∗
1 + c3x

∗
1


where the ∗’s are determined by cyclically permuting the indices for the written-out quantities. In
particular, X2 ∈ H3(C).
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Now, by Lemma 4.0.2, 1
2{X,X} = −1J ×X# + (1J , X)X = −(1J , X

#)1J + X# + (1J , X)X.
The LHS is thus

1

2
{X,X} = (nC(x1) + nC(x2) + nC(x3)− c1c2 − c2c3 − c3c1)

 1
1

1


+ (c1 + c2 + c3)

 c1 x3 x∗2
x∗3 c2 x1

x2 x∗1 c3

+

 c2c3 − nC(x1) ∗ ∗
∗ ∗ x∗3x

∗
2 − c1x1

∗ ∗ ∗

 .

Comparing with X2 gives the result. �

Proposition 4.0.4. Suppose δ ∈ m0(J) = Lie(M1
J ). Then the following are equivalent:

(1) δ is a derivation of J
(2) δ annihilates 1J
(3) δ preserves the pairing ( , ).

Proof. Because 1 · 1 = 1, (1) implies (2). To see that (2) implies (3), use that (x, y) =
1
4(1, 1, x)(1, 1, y)− (1, x, y).

We now check that (3) implies (2). Thus suppose δ preserves the pairing. Then δ commutes
with the isomorphism ι : J → J∨. Now 1J × 1J = 21J∨ = 2ι(1J), which is an axiom. Applying δ
gives δ(1J∨) = 1J × δ(1J). Recall the relation 1× x = (1J∨ , x)1J∨ − ι(x), which can be checked by
pairing both sides with an arbitrary element z ∈ J . Thus

δ(1J∨) = 1J × δ(1J) = (1J∨ , δ(1J))1J∨ − ι(δ(1J)) = −δ(1∨J )

because (1, δ(1)) = 0. Consequently δ annihilates 1.
We can now check that (3) implies (1). Indeed, assuming (3), we know that δ annihilates 1 and

commutes with ι. Now use that {A,B} = Φι(1J ),A(B), and it follows that δ is a derivation. �

We define an AJ -equivariant map ∧2J → a(J) as ΦX∧Y = ΦιX,Y − ΦιY,X .

Lemma 4.0.5. The element ΦX∧Y ∈ m(J) in fact is in a(J).

Proof. One calculates that ΦX∧Y annihilates 1J . In more detail

Φι(X),Y (1) = −X × (Y × 1) + (X, 1)Y + (X,Y )1

= −X × ((1, Y )1− Y ) + (X, 1)Y + (X,Y )1

= −(1, Y )((1, X)1−X) +X × Y + (X, 1)Y + (X,Y )1

= −(1, X)(1, Y )1 + (1, Y )X + (1, X)Y + (X,Y )1 +X × Y.
This is symmetric in X,Y so ΦX∧Y annihilates 1. �

Proposition 4.0.6. With J = H3(Θ), one has a decomposition a(J) = spin(Θ) ⊕ Θ3. Here
Θ3 ⊆ a(J) is defined as the sum of elements of the form Φε2∧V (x1,0,0),Φε3∧V (0,x2,0),Φε1∧V (0,0,x3).

Proof. Inspired by [Jac71, page 20]. The proof is similar to the proof of Proposition 3.0.10.
Let D = Φε2∧V (x1,0,0) + Φε3∧V (0,x2,0) + Φε1∧V (0,0,x3). Then

• D(ε1) = V (0,−x2, x3)
• D(ε2) = V (x1, 0,−x3)
• D(ε3) = V (−x1, x2, 0).

The injectivity of the map spin(Θ)⊕Θ3 → a(J) follows.
For the surjectivity, suppose δ ∈ a(J). Then as in the proof of Proposition 3.0.10, δ(ε1) =

µ1ε1 + V (0,−x1
2, x

1
3) and similarly for δ(ε2), δ(ε3). Because δ(ε1 + ε2 + ε3) = 0, one concludes

µ1 = µ2 = µ3 = 0 and x1
2 = x3

2 etc. The surjectivity follows. �
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Exercise 4.0.7. This is inspired by [Jac71, page 34, Proposition 11]. The point of this exercise
is to compute the roots of F4.

(1) Suppose V is an even-dimensional orthogonal space with isotropic basis e1, . . . , en, f1, . . . , fn.
Verify that h = Span{e1∧f1, . . . , en∧fn} ⊆ ∧2V = so(V ) is a Cartan subalgebra of so(V ).
Hint: Compute the weights of this Cartan subalgebra on V , and deduce its weights on
∧2V . Observe that the weight spaces outside of h are one-dimensional and nonzero.

(2) For V = Θ, consider hΘ = Span{ε1∧ε2,−e1∧e∗1,−e2∧e∗2,−e3∧e∗3}. Using the formulas for
the action of ∧2Θ on its triality representation (i.e., Exercise 4.0.7), compute the weights
of hΘ on the triality representation. One should get the following answer:
(a) For the “X” representation, the weights

±(1, 0, 0, 0),±(0, 1, 0, 0),±(0, 0, 1, 0),±(0, 0, 0, 1).

(b) For the “Y ” representation, the weights

±1

2
(1, 1, 1, 1),±1

2
(1, 1,−1,−1),±1

2
(1,−1, 1− 1),±1

2
(1,−1,−1, 1).

(c) For the “Z” representation, the weights

±1

2
(1, 1, 1,−1),±1

2
(1, 1,−1, 1),±1

2
(1,−1, 1, 1),±1

2
(−1, 1, 1, 1).

(3) Using the decomposition a(J) = f4 = spin(Θ) ⊕ Θ3, compute the weights of hΘ on a(J).
One should obtain that outside of hΘ, the weights are the 24 elements (±1,±1, 0, 0)
and permutations, the eight elements (±1, 0, 0, 0) and permutations, and the 16 elements
(±1

2 ,±
1
2 ,±

1
2 ,±

1
2). Because these are nonzero and one-dimensional, deduce that hΘ is a

Cartan subalgebra of a(J) with roots given as just listed.

Our next task is to give an AJ -decomposition of the Lie algebra m(J). Identity X ∈ J with the
Lie element Φι1,X ∈ m(J). We will prove the following theorem.

Theorem 4.0.8. The map a(J)⊕J → m(J) is a linear isomorphism. Moreover, [Φι1,X ,Φι(1),Y ] =
ΦY ∧X .

Proof. Suppose δ ∈ m(J) is given. If Z = δ(1J), then δ − 1
2Φ1,Z annihilates 1J . Thus

a(J) + J → m(J) is surjective. The injectivity is just as easy, by evaluating on 1J . For the second
part of the theorem, we first require some other results. �

If γ ∈ J∨ and x ∈ J , we have defined an element Φγ,x ∈ m(J). The action of Φγ,x on J∨ is
given by (as one can check)

Φγ,x(µ) = x× (γ × µ)− (x, γ)µ− (x, µ)γ.

Lemma 4.0.9. One has

(1) [δ,Φγ,x] = Φδ(γ),x + Φγ,δ(x)

(2) Φι1,X(ι(Z)) = −ι{X,Z}.

Proof. The first identity is the Lie-theoretic version of the group-theoretic identity proved
above.

For the second identity,

−Φι(1),X(ι(Z)) = −X × (1× Z) + (X, 1)Z + (X,Z)1

= X × Z − (1, Z)((1, X)1−X) + (X, 1)Z + (X,Z)1

= X × Z + (1, Z)X + (1, X)Z + (X,Z)1− (1, Z)(1, X)1

= X × Z + (1, Z)X + (1, X)Z − (1, X, Z)1
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= {X,Z}
�

Theorem 4.0.10. One has the identity Φι(X),Y + Φι(Y ),X = {{X,Y }, •} = Φι(1),{X,Y }.

Proof. The identity is [Jac69, QJ27,page 25]. �

Remainder of proof of Theorem 4.0.8. We must prove [Φι(1),X ,Φι(1),Y ] = ΦY ∧X . From
the previous lemma and theorem we obtain

[Φι(1),X ,Φι(1),Y ] = ΦΦι(1),X(ι(1)),Y + Φι(1),Φι(1),X(Y )

= −2Φι(X),Y + Φι1,X,Y

= Φι(Y ),X − Φι(X),Y .

�

Note the equality

Φι(X),Y =
1

2
(ΦιX,Y + ΦιY,X) +

1

2
(ΦιX,Y − ΦιY,X)

=
1

2
Φι1,{X,Y } +

1

2
ΦX∧Y .

This is how an arbitrary Φι(X),Y decomposes in the direct sum m(J) ' a(J)⊕ J of Theorem 4.0.8.
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CHAPTER 3

The Freudenthal construction and E7

1. The Freudenthal construction

Suppose that J is a cubic norm structure, or that J, J∨ is a cubic norm pair. Define a vector
space WJ = k ⊕ J ⊕ J∨ ⊕ k. The space WJ comes equipped with a symplectic pairing 〈 , 〉 and a
quartic form q, which are defined as follows. We write a typical element in WJ as v = (a, b, c, d),
so that a, d ∈ k, b ∈ J and c ∈ J∨. Then

〈(a, b, c, d), (a′, b′, c′, d′)〉 = ad′ − (b, c′) + (c, b′)− da′

and
q((a, b, c, d)) = (ad− (b, c))2 + 4aN(c) + 4dN(b)− 4(b#, c#).

The definition of this algebraic data goes back to Freudenthal.
We now define a group

HJ = {(g, ν) ∈ GL(WJ)×GL1 : 〈gv, gv′〉 = ν〈v, v′〉 ∀v, v′ ∈WJ and q(gv) = ν2q(v) ∀v ∈WJ}.
We set H1

J = ker ν : HJ → GL1. The element ν is called the similitude. The group GE7 is defined
as HJ with J = H3(Θ) and E7 is H1

J .
We now construct explicit elements of HJ .
First, if λ ∈ GL1, then one checks immediately that the map (a, b, c, d) 7→ (λ2a, λb, c, λ−1d) is

in HJ with similitude equal to λ.
Next, ifm ∈MJ withNJ(mX) = λNJ(X) for allX ∈ J , the map (a, b, c, d) 7→ (λa,m(b), m̃(c), λ−1d)

is in H1
J . Indeed, for this, one uses that NJ∨(m̃(c)) = λ−1NJ∨(c) and

4(m(b)#, m̃(c)#) = (λm̃(b× b), λ−1m(c× c)) = (b× b, c× c) = 4(b#, c#).

If J is a cubic norm structure, so that we have an identification ι : J ↔ J∨, we have a map

(a, b, c, d) 7→ (−d, ι(c),−ι(b), a)

and one checks quickly that this map is in H1
J .

The final elements we write down are more complicated. For x ∈ J define

nJ(x)(a, b, c, d) = (a, b+ ax, c+ b× x+ ax#, d+ (c, x) + (b, x#) + aNJ(x))

and for γ ∈ J∨ define

nJ∨(γ)(a, b, c, d) = (a+ (b, γ) + (c, γ#) + dNJ∨(γ), b+ c× γ + dγ#, c+ dγ, d).

We will prove the following theorem.

Theorem 1.0.1. The linear maps nJ(x) and nJ∨(γ) are in H1
J for all x ∈ J and γ ∈ J∨.

Moreover, nJ(x)nJ(y) = nJ(x+ y) for all x, y ∈ J and similarly for nJ∨.

To prove the theorem, we compute with the Lie algebra versions of these maps. Namely, define
nLie,J(x) ∈ End(WJ) as

nLie,J(x)(a, b, c, d) = (0, ax, b× x, (c, x))

and similarly for nLie,J∨(γ) for γ ∈ J∨. One verifies the following lemma.
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Lemma 1.0.2. One has nLie,J(x)4 = 0, so that nLie,J(x) is nilpotent. Moreover,

nJ(x) = exp(nLie,J(x)) = 1 + nLie,J(x) +
1

2
nLie,J(x)2 +

1

6
nLie,J(x)3

and similarly nJ∨(γ) = exp(nLie,J∨(γ)).

Proof. The computation is straightforward. One has exp(nLie,J(x))(a, b, c, d)

= (a, b, c, d) + (0, ax, b× x, (c, x)) +
1

2
(0, 0, ax× x, (b× x, x)) +

1

6
(0, 0, 0, a(x× x, x))

= nJ(x)(a, b, c, d).

�

Denote by ( , , , )WJ
the unique symmetric four-linear form normalized so that (v, v, v, v)WJ

=

2q(v). Define t : WJ ×WJ ×WJ →WJ as (w, x, y, z) = 〈w, t(x, y, z)〉 and set v[ = t(v, v, v).
Thus to prove Theorem 1.0.1, it suffices to verify

(1) 〈v1, nLie,J(x)v2〉 is symmetric in v1, v2;

(2) 〈nLie,J(x)(v), v[〉 = 0 for all v ∈WJ .

We use the following proposition, which computes v[ in coordinates.

Proposition 1.0.3. Suppose v = (a, b, c, d). Then v[ = (a[, b[, c[, d[) with

• a[ = −a(ad− (b, c))− 2N(b);

• b[ = −2c× b# + 2ac# − (ad− (b, c))b;

• c[ = 2b× c# − 2db# + (ad− (b, c))c;

• d[ = d(ad− (b, c)) + 2N(c).

Proof of Theorem 1.0.1. Suppose v = (a, b, c, d) and v[ = (a[, b[, c[, d[). We have

〈nLie,J(x)(v), v[〉 = 〈(0, ax, b× x, (c, x)), (a[, b[, c[, d[)〉

= (x,−ac[ + b× b[ − a[c).
The quantity paired with x is

−ac[ + b× b[ − a[c = −2ab× c# + 2adb# − (ad− (b, c))ac

− 2b× (b# × c) + 2ab× c# − (ad− (b, c))b× b
+ a(ad− (b, c))c+ 2N(b)c.

Most terms cancel, and then the proof follows from the identity b× (b#× c) = N(b)c+ (b, c)b#. �

It remains to prove Proposition 1.0.3.

Proof of Proposition 1.0.3. Set v = (a, b, c, d), v′ = (a′, b′, c′, d′). Then 1
2q(v + εv′) =

1
2q(v) + ε〈v′, v[〉 + O(ε2), so it suffices to compute the coefficient of ε in 1

2q(v + εv′). With ε2 = 0,
one has

1

2
q(v + εv′) =

1

2
(ad− (b, c) + ε(ad′ + a′d− (b, c′)− (b′, c)))2 + 2(a+ εa′)N(c+ εc′)

+ 2(d+ εd′)N(b+ εb′)− 2((b+ εb′)#, (c+ εc′)#).

The coefficient of ε is thus

ε coefficient = (ad′ + a′d− (b, c′)− (b′, c))(ad− (b, c)) + 2a′N(c) + 2d′N(b)

+ 2a(c#, c′) + 2d(b#, b′) = 2(b′, b× c#)− 2(b# × c, c′)

= a′((ad− (b, c))d+ 2N(c)) + (b′,−(ad− (b, c))c+ 2db# − 2b× c#)
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+ (c′,−(ad− (b, c))b+ 2ac# − 2b# × c) + d′(a(ad− (b, c)) + 2N(b)).

Comparing with the statement of Proposition 1.0.3 gives the result. �

2. The group and Lie algebra E7

In this section, we describe the Lie algebra h0
J of H1

J . We give what is called the Koecher-Tits
construction of the Lie algebra.

We first define h′J = J∨⊕mJ⊕J . We will put a Lie algebra structure on h′J , construct an explicit
map h′J → End(WJ) that lands in h0

J , and prove that this map is a Lie algebra isomorphism.
To begin, define a bracket [ , ] on h′J as [γ, x] = Φγ,x if γ ∈ J∨ and x ∈ J , together with

[J, J ] = 0, [J∨, J∨] = 0, and [φ, x] = φ(x), [φ, γ] = φ̃γ.

Proposition 2.0.1. This bracket satisfies the Jacobic identity. Consequently, h′J is a Lie
algebra.

Proof. The identity that must be verified is
∑

cyc [X, [Y,Z]] = 0. By linearity, it suffices to
verify the identity for X,Y, Z in the various graded pieces. If all three are in J , each term in the
sum is 0 so that the sum itself is 0. Similarly, if two of X,Y, Z are in J and the third in mJ , then
all terms of the sum are 0 so the sum itself is 0.

If two of X,Y, Z are in J and the third is in J∨, the Jacobi identity becomes the equality
Φγ,X(Y ) = Φγ,Y (X).

If one term is in J and two are in mJ , the Jacobi identity becomes the fact that [φ1, φ2](x) =
φ1(φ2(x))− φ2(φ1(x)), i.e., that the bracket of mJ and J comes from an action of mJ on J .

When one element is in J , one in mJ and one in J∨, the Jacobi identity becomes the relation
[φ,Φγ,x] = Φ

φ̃(γ),x
+ Φγ,φ(x).

The other cases follow just as above with the roles of J and J∨ interchanged. �

We now define a map h′J → End(WJ). First suppose φ ∈ mJ with multiplier t(φ), so that
(φ(z1), z2, z3) + (z1, φ(z2), z3) + (z1, z2, φ(z3)) = t(φ)(z1, z2, z3) for all z1, z2, z3 ∈ J . Define M(φ) ∈
End(WJ) as

M(φ)(a, b, c, d) =

(
− t(φ)

2
a,− t(φ)

2
b+ φ(b),

t(φ)

2
c+ φ̃(c),

t(φ)

2
d

)
.

Now, define h′J → End(WJ) as

(γ, φ, x) 7→ nLie,J∨(γ) +M(φ) + nLie,J(−x).

To see that the map lands in h0
J , we just must check that M(φ) is in h0

J . To see that it is, we work
on the group level, and note that (a, b, c, d) 7→ (λ−3a, λ−1b, λc, λ3d) is in H1

J so that

(a, b, c, d) 7→ (t(φ)a, φ(b), φ̃(c),−t(φ)d) +
t(φ)

2
(−3a,−b, c, 3d) = M(φ)(a, b, c, d)

is in h0
J .

Proposition 2.0.2. The map h′J → h0
J is a Lie algebra homomorphism.

Proof. We compute

[nLie,J∨(γ), nLie,J(−x)](a, b, c, d) = [nLie,J(x), nLie,J∨(γ)](a, b, c, d)

= nLie,J(x)((b, γ), c× γ, dγ, 0)− nLie,J∨(γ)(0, ax, b× x, (c, x))

= (−a(x, γ),−γ × (b× x) + (b, γ)x, x× (γ × c)− (c, x)γ, d(γ, x))

= M(Φγ,x)(a, b, c, d)
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because t(Φγ,x) = 2(γ, x).
We also compute

[M(φ), nLie,J(x)](a, b, c, d) = M(φ)(0, ax, b× x, (c, x))− nLie,J(x)(−ta/2,−tb/2 + φ(b), tc/2 + φ̃(c), td/2)

= (0,−tax/2 + aφ(x), t/2(b× x) + φ̃(b× x), t(c, x)/2)

+ (0, tax/2 + t/2(b× x)− x× φ(b),−t(c, x)/2− (x, φ̃(c)))

= (0, aφ(x), b× φ(x), (c, φ(x)))

= nLie,J(φ(x))(a, b, c, d).

The computation for nLie,J∨(φ̃(γ)) is similar. �

To prove that the map h′J → h0
J is an isomorphism, we first take a detour into a special set of

elements of WJ , called rank one elements.

3. Rank one elements

We begin with the notion of rank for elements of J .

Definition 3.0.1. All elements of J are of rank at most 3. If N(x) = 0, then x has rank at
most 2. If x# = 0, then x has rank at most one. If x = 0, then x has rank 0.

Here is the definition of rank for elements of WJ .

Definition 3.0.2. All elements of WJ are of rank at most 4. If q(v) = 0, then v has rank at

most 3. If v[ = 0, then v has rank at most two. If (v, v, w′, w) = 0 for all w′ ∈ (kv)⊥, then v has
rank at most one. If v = 0, then v has rank 0.

We will later prove that v has rank at most one if and only if 3t(v, v, x) + 〈v, x〉v = 0 for all
x ∈WJ . (Note that this condition implies the rank one condition of the definition, but the converse
is not at all obvious.)

We now give the key computation that we will need, and then give the results that follow from
this computation.

Proposition 3.0.3. Suppose v = (a, b, c, d) and x = (α, β, γ, δ). Then 1
2Φv,v(x) = 3t(v, v, x) +

〈v, x〉v = (a′′, b′′, c′′, d′′) with

a′′ = α((b, c)− 3ad) + 2(β, ac− b#)

b′′ = 2α(c# − db) +
1

3
((b, c)− 3ad)β + 2Φ′c,b(β) + 2(ac− b#)× γ

c′′ = 2(c# − db)× β +
1

3
(3ad− (b, c))γ + 2Φ̃′c,b(γ) + 2δ(ac− b#)

d′′ = 2(c# − db, γ) + (3ad− (b, c))δ.

Here recall that for γ ∈ J∨, x, z ∈ J

Φ′γ,x(z) = −γ × (x× z) + (γ, z)x+
1

3
(x, γ)z.

Proof. We begin with formulas for v[ and 3t(v, v, x) for v, x ∈ WJ . Then one has v[ =

(a[, b[, c[, d[) with

• a[ = −a2d+ a(b, c)− 2n(b);

• b[ = −2c× b# + 2ac# − (ad− (b, c))b;

• c[ = 2b× c# − 2db# + (ad− (b, c))c;
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• d[ = ad2 − d(b, c) + 2n(c).

Symmetrizing this formula for v[, one finds that 3t(v, v, x) = (a′, b′, c′, d′), with

a′ = α((b, c)− 2ad) + (β, ac− 2b#) + (γ, ab)− δa2

b′ = α(2c# − bd) + ((b, c)− ad)β − 2c× (b× β) + (β, c)b+ 2(ac− b#)× γ + (b, γ)b− δab

c′ = α(dc) + 2(c# − db)× β + (ad− (b, c))γ + 2b× (c× γ)− (b, γ)c− (β, c)c+ (ac− 2b#)δ

d′ = αd2 + (β,−dc) + (2c# − db, γ) + (2ad− (b, c))δ.

The element 3t(v, v, x) + 〈v, x〉v is then computed from the above quantity. �

Proposition 3.0.4. The element e = (1, 0, 0, 0) of WJ is rank one. In fact, 1
2Φe,e(x) = 0 for

all x ∈WJ .

Proof. This follows directly from the proposition above. �

Lemma 3.0.5. If v = (1, 0, c, d) is rank one, then c = 0 and d = 0.

Proof. From the fact that v[ = 0, we obtain d = 0 and c# = 0. Now, note that

〈(1, 0, c, 0), (α, β, γ, δ)〉 = δ + (β, c).

However, in the notation of the proposition above, a′′ = 2(β, c). By taking β arbitrary and δ =
−(c, β), we see that x ∈ (kv)⊥ but t(v, v, x) = 0 implies (c, β) = 0. Since β is arbitrary, we get
c = 0. �

It is clear that the set of rank one elements is an HJ -set. In fact,

Proposition 3.0.6. There is one H1
J -orbit of rank one lines. In fact, denote by H ′J the subgroup

of HJ generated by the explicit elements described above. Then there is one H ′J orbit of rank one
lines.

Proof. We first claim that we can use the elements of H ′J to move an arbitrary nonzero
v = (a, b, c, d) to one of the form (1, b′, c′, d′). To see this, note that nJ∨(tγ)(a, b, c, d) = (a +
t(b, γ) + t2(c, γ#) + t3dN(γ), ∗, ∗, ∗). If this first component is 0 for all t ∈ k then a = (b, γ) =
(c, γ#) = dN(γ) = 0. If (b, γ) = 0 for all γ ∈ J∨, then b = 0. Similarly, if dN(γ) = 0 for all γ ∈ J∨,
then d = 0. Finally, because the elements µγ# are Zariski dense in J , if (c, γ#) = 0 for all γ ∈ J∨,
then c = 0. This proves that we can make the first term nonzero. Then, by applying the map
(a, b, c, d) 7→ (λ−1a, b, λc, λ2d) we see that we can assume a = 1.

Now, we have an element of the form (1, b′, c′, d′). Then apply nJ(−b′) to obtain an element of
the form (1, 0, c, d). The proposition thus follows from the lemma. �

Theorem 3.0.7. If v is rank one, then 3t(v, v, x) = 〈x, v〉v for all x ∈WJ .

Proof. It is true for e = (1, 0, 0, 0) and thus it is true for every rank one element by HJ -
equivariance. �

Thus, we could have equivalently defined rank one elements in terms of the equality of this
theorem.

Corollary 3.0.8. An element v = (a, b, c, d) ∈WJ is rank at most one if and only if

(1) b# − ac = 0,
(2) c# − db = 0,
(3) 3ad− (b, c) = 0,
(4) and Φ′b,c = 0.
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Proof. We computed above explicitly the value 3t(v, v, x) + 〈v, x〉v for general v and x =
(α, β, γ, δ). Taking the coefficients of α, β, γ, δ in this explicit computation gives the corollary. �

For a rank one element e, define Xe = {x ∈WJ : (e, x, v, v′) = 0∀v, v′ ∈ (ke)⊥}.

Lemma 3.0.9. If e = (1, 0, 0, 0) then Xe = {(a, b, 0, 0) ∈WJ}.

Proof. Set v = (1, µb+ λb′, µc+ λc′, 0). It suffices to compute the compute the coefficient of

λµ in v[. This coefficient is immediately computed to be ((b, c′) + (b′, c), 2c× c′, 0, 0). The lemma
follows. �

Proposition 3.0.10. Set e = (1, 0, 0, 0) and f = (0, 0, 0, 1). The simultaneous stabilizer of the
lines ke and kf in H1

J is MJ .

Proof. Suppose g stabilizes the lines ke and kf . Then g also stabilizes (ke)⊥, (kf)⊥, Xe

and Xf . Taking intersections, one sees that g stabilizes the spaces (0, ∗, 0, 0) and (0, 0, ∗, 0). The
proposition now follows without much effort. �

Exercise 3.0.11. Finish the proof of the above proposition.

Corollary 3.0.12. Suppose δ ∈ h0
J stabilizes the lines k(1, 0, 0, 0) = ke and k(0, 0, 0, 1) = kf .

Then δ = M(φ) for some φ ∈ mJ .

Proof. From the previous proposition, we have

δ(a, b, c, d) = (t(φ′)a, φ′(b), φ̃′(c),−t(φ′)d)

for some φ′ ∈ mJ . Now set φ = −t(φ′)Id+ φ′. One has φ ∈ mJ with t(φ) = −2t(φ′). The corollary
follows. �

We can prove that the map h′J → h0
J is an isomorphism.

Proposition 3.0.13. The Lie algebra homomorphism h′J → h0
J is an isomorphism.

Proof. We first prove injectivity. Thus suppose δ = nLie,J∨(γ) +M(φ)−nLie,J(x) = 0. Then,
evaluating δ on e = (1, 0, 0, 0), we find x = 0. Evaluating on f = (0, 0, 0, 1), we find γ = 0.
Evaluating M(φ) on (a, b, c, d), we find φ = 0. Thus our map is injective.

For the surjectivity, suppose δ ∈ h0
J is given. We claim δ(e) ∈ Xe. Indeed, if v, v′ ∈ (ke)⊥, then

(e, e, v, v′) = 0. Applying δ gives (e, δ(e), v, v′) = 0, as (e, e, δ(v), v′) and (e, e, v, δ(v′)) are each 0,
because e is rank one.

Because δ(e) ∈ Xe, there exists x ∈ J so that δ + nLie,J(x) stabilizes the line ke. Similarly,
there exists γ ∈ J∨ so that δ + nLie,J(x) − nLie,J∨(γ) stabilizes both the lines ke and kf . The
surjectivity now follows from Corollary 3.0.12. �

4. More on rank one elements

In this section, we develop more of the structure theory of the space WJ and of the Lie algebra
h0
J .

We begin with the following important theorem.

Theorem 4.0.1. Suppose v ∈WJ has q(v) 6= 0, and let ω be the image of x in Ev := k[x]/(x2−
q(v)). Then ωv + v[ is rank one in WJ ⊗ Ev.

Proof. By HJ -equivariance, extension of scalars, and a Zariski density argument, we are
reduced to considering the case v = (1, 0, c, d) with N(c) 6= 0 and ω ∈ k satisfies ω2 = q(v) =
d2 + 4N(c). Then one computes

ωv + v[ = (ω − d, 2c#, (ω + d)c, ωd+ d2 + 2N(c))
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= (ω − d)

(
1,

(ω + d)c#

2N(c)
,
ω + d

ω − d
c,

(ω + d)d+ 2N(c)

ω − d

)
.

But ω+d
ω−d = (ω+d)2

4N(c) and (ω+d)d+2N(c)
ω−d = (ω+d)3

8N(c) . The theorem follows. �

Corollary 4.0.2. One has the following identities:

3t(v[, v[, x) + 3q(v)t(v, v, x) = 〈x, v[〉v[ + q(v)〈x, v〉v(4)

6t(v, v[, x) = 〈x, v〉v[ + 〈x, v[〉v.(5)

Proof. One separates the “real” and “imaginary” parts of the identity

(6) 3t(ωv + v[, ωv + v[, x) = 〈x, ωv + v[〉(ωv + v[).

�

See [Pol18, Theorem 5.1.1.] for some context regarding (6).
With these normalizations, for w,w′ ∈WJ define Φw,w′ ∈ End(WJ) as follows:

Φw,w′(x) = 6t(w,w′, x) + 〈w′, x〉w + 〈w, x〉w′.
We have the following fact.

Proposition 4.0.3. For w,w′ ∈WJ , the endomorphism Φw,w′ is in h(J)0, i.e., it preserves the
symplectic and quartic form on WJ . Furthermore, if φ ∈ h(J)0, then [φ,Φw,w′ ] = Φφ(w),w′+Φw,φ(w′).

Proof. The fact that Φw,w′ preserves the symplectic form follows immediately from the defi-

nitions. To check that is preserves the quartic form, one must evaluate 〈φw,w′(v), v[〉. To do this,
one uses (5), and obtains 0, as desired. The equivariance statement [φ,Φw,w′ ] = Φφ(w),w′ + Φw,φ(w′)

is easily checked. �

5. The exceptional upper half-space

When the ground field k = R and the pairing ( , ) on J is positive definite, the group HJ has
a Hermitian symmetric space. This space is HJ = {Z = X + iY : Y > 0}. Here Y > 0 means that
Y = Uy1J for some y ∈ J with N(y) 6= 0. Here Uyx = −y#×x+ (y, x)y, and Uy1J = y2 = 1

2{y, y}.
We will prove that Y > 0 is equivalent to the conditions tr(Y ) > 0, tr(Y #) > 0 and N(Y ) > 0.

We will need the following theorem.

Theorem 5.0.1. One has N(Uyx) = N(y)2N(x). In particular, if N(y) 6= 0, then Uy ∈MJ .

Proof. For a proof of this theorem, see McCrimmon, “A tast of Jordan algebras”, Theorem
C.2.4. �

If m ∈MJ with N(mX) = δ2N(X) for all X ∈ J , define M(δ,m) ∈ H1
J as M(δ,m)(a, b, c, d) =

(δ−1a, δ−1m(b), δm̃(c), δd). In particular M(N(y), Uy) ∈ H1
J for all y with N(y) 6= 0.

5.1. The positive definite cone. We first sketch the proof of the key theorem, that every
element of J is diagonalizable by an element of AJ .

Theorem 5.1.1. Suppose X ∈ J . Then there exists a ∈ AJ with a(X) diagonal.

Proof. Set J0 = (R1J)⊥. By writing X = µ1J + X0, with X0 ∈ J0, it suffices to assume
X ∈ J0. Now, one uses that m0

J = aJ ⊕ J0 is the Cartan decomposition of m0
J , and the trace 0

diagonal elements make up a maximal abelian subalgebra of J0. The result then follows from the
fact that p = ∪k∈K(Ad(k)a); see Knapp, “Lie groups: Beyond an introduction”, Theorem 6.51. �

Corollary 5.1.2. The following statement are equivalent:
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(1) Y ∈ J is positive-definite, i.e., Y = y2 for some y ∈ J with N(y) 6= 0.
(2) There exists a ∈ AJ with aY diagonal with positive entries
(3) tr(Y ), tr(Y #) and N(Y ) are all positive.

Proof. To see that (1) implies (2), apply the theorem to find a ∈ AJ with ay = diag(t1, t2, t3).
Now Y = y2 implies a(Y ) = (ay)2 = diag(t21, t

2
2, t

2
3), as desired. Conversely, it is clear that (2)

implies (1), because if a(Y ) = t2 with t diagonal, then Y = (a−t)2.
Because a commutes with #, fixes 1J and preserves the trace pairing, (2) implies (3). Finally,

suppose given (3). By the theorem, we can assume Y = diag(t1, t2, t3) is diagonal. Now, it is easy
to see that the inequalities t1 + t2 + t3 > 0, t1t2 + t2t3 + t3t1 > 0 and t1t2t3 > 0 force each tj > 0.
Thus (3) implies (2), and we are done. �

We require one additional corollary.

Corollary 5.1.3. Let D denote the connected component of the set {Y ∈ J : N(Y ) > 0}
containing 1J . Then D is contained in the set Y > 0.

Proof. Let γ : [0, 1] → D be a path, with γ(0) = 1J . Then the polynomial pt(u) = u3 −
tr(γ(t))u2 + tr(γ(t)#)u−N(γ(t)) has three real roots, by the Theorem. Moreover, N(γ(t)) > 0 for
all t. It follows that the three real roots of p1(u) are positive. The corollary follows. �

Exercise 5.1.4. Let C denote the set of Y in J with Y > 0. The point of this exercise is to
prove that C is connected and convex.

(1) Suppose Y0, Y1 are positive definite. Prove that the trace pairing (Y0, Y1) > 0. Hint: First
note that the diagonal entries of a square are positive, from the formula for X2. Now
apply an a ∈ AJ so that a(Y0) is diagonal with positive entries.

(2) Prove that if Y > 0 then Y # > 0. Hint: Reduce to the diagonal case.
(3) Prove that if Y0, Y1 > 0 then N(tY0 + (1− t)Y1)) > 0 for t ∈ [0, 1].
(4) Argue as in the Corollary above that Y is convex (and in particular, connected.)

Exercise 5.1.5. The point of this exercise is to work out the shape of the positive definite cone
in case J = R×S with S a quadratic space of signature (1, ∗). Specifically, we have S = R1S ⊕S0

where S0 = (R1S)⊥ and q is 1 on 1S and negative definite on S0. Let C = {y2 : y ∈ J,N(y) 6= 0}.
(1) Recall that if y ∈ J , then y2 = −1 × y# + (y, 1J)y. Prove that if y = (β, s), then

y2 = (β2,−q(s)1S + (1S , s)s). If s = µ1S +s0, then this is y2 = (β2, (µ2− q(s0))1s+ 2µs0).
(2) Deduce that if Y = (β′, v) ∈ C, then β′ > 0, (1S , v) > 0 and q(v) > 0.
(3) Prove conversely that if Y = (β′, v) satisfies β′ > 0, (1S , v) > 0 and q(v) > 0, then Y = y2

for some y ∈ J with N(y) 6= 0. Hint: Write v = r1S + r0 with r ∈ R>0 and r0 ∈ S0.

Define µ to be the positive square root of (r + q(v)1/2)/2, s0 = 1
2µr0 and β = (β′)1/2.

Check that y2 = Y with y = (β, µ1S + s0).
(4) Prove that if Y ∈ C, then tr(Y ) > 0, tr(Y #) > 0 and N(Y ) > 0.
(5) Prove conversely that if Y ∈ J satisfies tr(Y ) > 0, tr(Y #) > 0 and N(Y ) > 0, then Y ∈ C.

Hint: Suppose Y = (β, s). Then tr(Y ) = β + (1S , s), tr(Y #) = q(s) + β(1S , s), and
N(Y ) = βq(s). Now, using that q is negative definite on S0, prove that there all real
numbers β′ and β′′ with (1S , s) = β′ + β′′ and q(s) = β′β′′. The inequalities are thus
β + β′ + β′′ > 0, ββ′ + β′β′′ + β′′β > 0 and ββ′β′′ > 0. Conclude that β, β′, β′′ > 0 and
thus Y ∈ C.

(6) Prove that C is convex, and in particular, and connected. Hint: You may find it helpful
to use Cauchy-Schwartz on S0.
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5.2. The upper half space. We now define how HJ(R)0 acts on HJ .
To do this, suppose Z ∈ JC. Define r0(Z) = (1,−Z,Z#,−N(Z)) = n(−Z)(1, 0, 0, 0). Then

one has the following proposition, which must be well-known.

Proposition 5.2.1. Suppose Z ∈ HJ , so that Im(Z) is positive definite. Suppose moreover
that g ∈ HJ(R)0. Then there is j(g, Z) ∈ C× and gZ ∈ HJ so that gr0(Z) = j(g, Z)r0(gZ). This
equality defines the factor of automorphy j(g, Z) and the action of HJ(R)0 simultaneously.

Both for this proposition, and below, we will need the following lemma.
Suppose J is a cubic norm structure. Let ι : J ↔ J∨ be the identification given by the

symmetric pairing on J . Define J2 : WJ → WJ as J2(a, b, c, d) = (d,−ι(c), ι(b),−a). One checks
that J2 ∈ H1

J . Define a pairing on WJ via (v, w) = 〈J2v, w〉.

Lemma 5.2.2. The pairing (v, w) is symmetric, with (v, v) = a2 + (b, b) + (c, c) + d2 if v =
(a, b, c, d). Thus if the trace pairing on J is positive-definite, the pairing ( , ) on WJ is as well.
Furthermore, one has |〈r0(i), v〉|2 = (v, v) + 2 tr(b# − ac) + 2 tr(c# − db). Thus if v is rank one,
|〈r0(i), v〉|2 = (v, v).

Proof. The first part of the lemma is immediate from the definitions. For the second part,
suppose v = (a, b, c, d) and recall r(i) = (1,−i,−1, i). Then 〈v, r(i)〉 = (tr(b) − d) + i(a − tr(c)),
and thus

|〈v, r(i)〉|2 = (tr(b)− d)2 + (a− tr(c))2

= d2 − 2d tr(b) + tr(b)2 + a2 − 2a tr(c) + tr(c)2

= d2 + (b, b) + a2 + (c, c) + 2 tr(b# − ac) + 2 tr(c# − db),

as desired. Here we have used the identity tr(x)2 = (x, x) + 2 tr(x#) for x ∈ J , which follows
immediately from the definition of the pairing (x, x). If v is rank one, then b# − ac = 0 and
c# − db = 0, and the lemma follows. �

Proof of Proposition 5.2.1. We recall the argument sketched in [Pol17, Section 6.2.1]
and [Pol20a]. First, if g ∈ H1

J(R) one has 〈gr0(i), (0, 0, 0, 1)〉 6= 0, since 〈gr0(i), (0, 0, 0, 1)〉 =
〈r0(i), g−1(0, 0, 0, 1)〉 and |〈r0(i), g−1(0, 0, 0, 1)〉|2 6= 0 by Lemma 5.2.2 since g−1(0, 0, 0, 1) is rank
one. Thus, there is j(g, i) ∈ C× and Z ∈ JC so that gr0(i) = j(g, i)r0(Z). We claim that
N(Im(Z)) > 0.

To see this, first note the general identity 〈r0(Z), r0(W )〉 = N(Z −W ) for Z,W ∈ JC. Thus

ν(g)N(2i) = ν(g)〈r0(i), r0(−i)〉 = 〈gr0(i), gr0(−i)〉 = 〈gr0(i), gr0(i)〉 = |j(g, i)|2N(Z − Z).

Thus if ν(g) > 0, then N(Y ) > 0.
Now, if g ∈ HJ(R)0, then N(Im(gi)) > 0, and thus by continuity Im(gi) is positive definite.

Hence the proposition is proved when Z = i1J .
The general case follows from the fact that the subgroup generated by the M(N(y), Uy) and

n(X) acts transitively on HJ , and that these elements can be taken to be in HJ(R)0. Indeed, first
note that if Y > 0, there exists y > 0 with y2 = Y . To see this, one can diagonalize Y via the
action of AJ then take a positive square root of a diagonal element. It follows that for such a y,
M(N(y), Uy) is in H1

J(R)0, as desired.

Now, if g ∈ H(
JR)0 and Z ∈ HJ , say Z = g1(i1J), then

gr0(Z) = gr0(g1i) = j(g1, i)
−1gg1r0(i) = j(g1, i)

−1j(gg1, i)r0(gg1i) = j(g, Z)r0(gZ)

with gZ = gg1i ∈ HJ , as required. �
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We will now work to understand the stabilizer of i1J inside of H1
J . We prove the following

proposition.

Proposition 5.2.3. Suppose g ∈ H1
J(R) stabilizers i1J ∈ HJ . Then g commutes with J2.

To prove this proposition, we introduce the Cayley transform c as follows. Define c ∈ H1
J(C)

as c = nJ∨(i1J/2)nJ(i1J). We have the following useful lemma.
Define W+ = {(a, ic, c, ia)} to be the i-eigenspace of J2 on WJ ⊗C and similarly define W− =

{(a,−ic, c,−ia)} to be the (−i)-eigenspace of J2 on WJ ⊗C.

Lemma 5.2.4. One has

(1) cr0(i) = (1, 0, 0, 0)
(2) cr0(−i) = −8i(0, 0, 0, 1)
(3) cW+ = (∗, 0, ∗, 0)
(4) cW− = (0, ∗, 0, ∗)

Proof. These are tedious but straightforward calculations; we omit them. �

Using the lemma, we can now prove the proposition.

Proof of Proposition 5.2.3. If g stabilizes i1J , then g fixes the lines Cr0(i) and Cr0(−i).
Consequently cgc−1 ∈ H1

J(C) fixes the lines (∗, 0, 0, 0) and (0, 0, 0, ∗). It follows (we’ve proved this)
that then cgc−1 also fixes the spaces (0, ∗, 0, 0) and (0, 0, ∗, 0). Consequently, cgc−1 stabilizes cW+

and cW−, from which we obtain that g stabilizes W+ and W−. As these are the eigenspaces of J2,
we conclude that g commutes with J2, as desired. �

5.3. Modular forms. Let J = H3(Θ) be as above, where Θ has positive definite norm form.
Define G = H1

J(R). It turns out that the group G is connected, so it acts (transitively) on HJ .
Conjugation by J2 is a Cartan involution Θ on G (see [Pol20a, section 3.4.5]). Define a norm

on G as ||g||2 = tr(Ad(g)Ad(Θ(g)−1)). A function φ : G → C is said to be of moderate growth if
||φ(g)|| < C||g||N for some C,N > 0.

Following Baily, “An exceptional arithmetic group and its Eisenstein series”, a discrete subgroup
Γ ⊆ G is defined as follows. Let Θ0 ⊆ Θ be Coxeter’s ring of integral octonions; see, e.g., loc

cit. Define J0 ⊆ J to be the integral lattice consisting of matrices X =

 c1 x3 x∗2
x∗3 c2 x1

x2 x∗1 c3

 with

c1, c2, c3 ∈ Z and x1, x2, x3 ∈ Θ0. Define WJ0 ⊆WJ to be the lattice WJ0 = Z⊕J0⊕J∨0 ⊕Z. Then
Γ is defined to be the subgroup of H1

J(Q) that preserves WJ0 .
A modular form for Γ of weight ` > 0 is a holomorphic function f : HJ → C satisfying

(1) f(γZ) = j(γ, Z)`f(Z) for all γ ∈ Γ and
(2) the function φf : Γ\G→ C defined by φf (g) = j(g, i)−`f(g · i) is of moderate growth.

Some results about modular forms on G can be found in:

(1) Baily, “An exceptional arithmetic group and its Eisenstein series”
(2) Kim, “Exceptional modular form of weight 4 on an exceptional domain contained in C27

(3) Gan and Loke, “Modular forms of level p on the exceptional tube domain”
(4) Kim an Yamauchi, “Cusp forms on the exceptional group of type E7”
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CHAPTER 4

The Lie algebra and group E8

Suppose J, J∨ is a cubic norm pair. Associated to this pair, we define a Lie algebra g(J). When
J = H3(Θ), g(J) turns out to be the Lie algebra of type E8. One can take this as a definition of
the Lie algebra e8.

1. The Z/2 grading on g(J)

I believe the construction of the Lie algebra g(J) in this section essentially goes back to Freuden-
thal.

Denote by V2 the defining two-dimensional representation of sl2 = sp2. Recall that we have an
identification Sym2(V2) ' sl2 as (v ·v′)(x) = 〈v′, x〉v+ 〈v, x〉v′. Here 〈 , 〉 is the standard symplectic
pairing on V2:

〈(a, b)t, (c, d)t〉 =
(
a b

)( 1
−1

)(
c
d

)
= ad− bc.

We define

g(J) = g(J)0 ⊕ g(J)1 :=
(
sl2 ⊕ h(J)0

)
⊕ (V2 ⊗WJ) .

Here g(J)0 = sl2⊕h(J)0 is the zeroth graded piece of g(J), and g(J)1 = V2⊗WJ is the first graded
piece of g(J).

1.0.1. The bracket. We define a map [ , ] : g(J) ⊗ g(J) → g(J) as follows: If φ, φ′ ∈ g(J)0 =
sl2 ⊕ h(J)0, v, v′ ∈ V2, and w,w′ ∈WJ , then

[(φ, v ⊗ w), (φ′, v′ ⊗ w′)] =

(
[φ, φ′] +

1

2
〈w,w′〉(v · v′) +

1

2
〈v, v′〉Φw,w′ , φ(v′ ⊗ w′)− φ′(v ⊗ w)

)
.

With this definition, we have the following fact.

Proposition 1.0.1. The bracket [ , , ] on g(J) satisfies the Jacobi identity.

Proof. To check the Jacobi identity
∑

cyc [X, [Y,Z]] = 0, by linearity it suffices to check it

on the various Z/2-graded pieces. Then there are four types identities that must be checked.
Namely, if 0, 1, 2 or 3 of the elements X,Y, Z are in g(J)1 = V2 ⊗WJ . If all three of X,Y, Z are
in g(J)0 = sl2 ⊕ h(J)0, then the Jacobi identity is of course satisfied. If two of X,Y, Z are in
g(J)0, then the Jacobi identity is satisfied. This fact is equivalent to the fact that the bracket [ , ]α
defines a Lie algebra action of g(J)0 on g(J)1: [φ, φ′](x) = φ(φ′(x)) − φ′(φ(x)) for x ∈ g(J)1 and
φ, φ′ ∈ g(J)0. If one of X,Y, Z is in g(J)0, then the Jacobi identity is satisfied by the equivariance of
the map g(J)1⊗g(J)1 → g(J)0. Finally, when X,Y, Z are all in g(J)1, a simple direct computation
shows that

∑
cyc [X, [Y,Z]] = 0.

In more detail, suppose X1 = v1 ⊗ w1, X2 = v2 ⊗ w2 and X3 = v3 ⊗ w3. We must evaluate:

−2
∑
cyc

[X1, [X2, X3]] = 2
∑
cyc

[v2 ⊗ w2, v3 ⊗ w3](v1 ⊗ w1)

=
∑
cyc

(〈v2, v3〉Φw2,w3 + 〈w2, w3〉v2 · v3)(v1 ⊗ w1)
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=
∑
cyc

〈v2, v3〉v1 ⊗ (6t(w1, w2, w3) + 〈w3, w1〉w2 + 〈w2, w1〉w3)

+
∑
cyc

〈w2, w3〉(〈v3, v1〉v2 + 〈v2, v1〉v3)⊗ w1.

The term t(w,w′, w′′) drops out right away because it is symmetric by applying the identity∑
cyc 〈v2, v3〉v1 = 0 for v1, v2, v3 ∈ V2. The other cyclic sums cancel in pairs. �

2. The Z/3 grading

2.1. The Z/3 grading on g(J). In this subsection we recall elements from the paper [Rum97]
(in different notation). Rumelhart constructed the Lie algebra g(J) through a Z/3-grading, as
opposed to a Z/2-grading as we have described above.

Denote by V3 the defining representation of sl3, and by V ∨3 the dual representation. In the
Z/3-graded picture, one defines

g(J) = sl3 ⊕m(J)0 ⊕ V3 ⊗ J ⊕ V ∨3 ⊕ J∨.

We consider V3, V
∨

3 as left modules for sl3, and J, J∨ as left modules for m(J)0.
2.1.1. The bracket. Following [Rum97], the Lie bracket is given as follows. First, because V3 is

considered as a representation of sl3, there is an identification ∧2V3 ' V ∨3 , and similarly ∧3V ∨3 ' V3.
If v1, v2, v3 denotes the standard basis of V3, and δ1, δ2, δ3 the dual basis of V ∨3 , then v1 ∧ v2 = δ3,
δ1 ∧ δ2 = v3, and cyclic permutations of these two identifications.

Take φ3 ∈ sl3, φJ ∈ m(J)0, v, v′ ∈ V3, δ, δ′ ∈ V ∨3 , X,X ′ ∈ J and γ, γ′ ∈ J∨. Then

[φ3, v ⊗X + δ ⊗ γ] = φ3(v)⊗X + φ3(δ)⊗ γ.
[φJ , v ⊗X + δ ⊗ γ] = v ⊗ φJ(X) + δ ⊗ φJ(γ)

[v ⊗X, v′ ⊗X ′] = (v ∧ v′)⊗ (X ×X ′)
[δ ⊗ γ, δ′ ⊗ γ′] = (δ ∧ δ′)⊗ (γ × γ′)
[δ ⊗ γ, v ⊗X] = (X, γ)v ⊗ δ + δ(v)Φγ,X − δ(v)(X, γ)

= (X, γ)

(
v ⊗ δ − 1

3
δ(v)

)
+ δ(v)

(
Φγ,X −

2

3
(X, γ)

)
.

Note that v ⊗ δ − 1
3δ(v) ∈ sl3 and Φγ,X − 2

3(X, γ) = Φ′γ,X ∈ m(J)0. Also recall that Φγ,X ∈ m(J)
acts on J via

Φγ,X(Z) = −γ × (X × Z) + (γ, Z)X + (γ,X)Z.

Furthermore, the action of sl3 and m(J)0 on V ∨3 and J∨ is determined by the equalities (φ3(v), δ)+
(v, φ3(δ)) = 0 and (φJ(X), γ) + (X,φJ(γ)) = 0.

One can give an explicit identification between the Lie algebra g(J) defined in this section and
the one defined in the previous section, which is why we have given both Lie algebras the same
name. See [Pol20a, Proposition 4.2.1].

3. The Killing forms on the Lie algebras

We define symmetric, non-degenerate, invariant bilinear forms on the Lie algebras we’ve dis-
cussed.
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3.1. The form on m(J). Suppose J is a cubic norm structure, or J, J∨ is a cubic norm
pair. We have defined the Lie algebra m(J). To define a bilinear form on m(J), we begin as follows.
Suppose φ, φ′ ∈ m(J) and φ =

∑
j Φγj ,xj , as we can assume because Φ : J∨⊗J → m(J) is surjective.

(We haven’t proved this surjectivity, but it is true.) Then we define Bm(φ′, φ) =
∑

j(φ
′(xj), γj).

Lemma 3.1.1. The bilinear form Bm is well-defined and symmetric on m(J).

Proof. First one checks easily that

Bm(Φγ′,x′ ,Φγ,x) = (γ′, x′)(γ, x) + (γ′, x)(γ, x′)− (x× x′, γ × γ′).

It is clear that this is symmetric in the two elements of m(J), and thus

Bm(Φγ′,x′ ,Φγ,x) = (Φγ′,x′(x), γ) = (Φγ,x(x′), γ′).

Because the pairing can be expressed in terms of the action of Φγ,x on J , it is well-defined. I.e., if
φ =

∑
j Φγj ,xj = 0 ∈ m(J), then Bm(φ′, φ) =

∑
j(φ
′(xj), γj) = 0.

This completes the proof. �

Proposition 3.1.2. The bilinear form Bm is invariant, i.e., Bm([φ, φ′], φ′′) = Bm(φ, [φ′, φ′′])
for all φ, φ′, φ′′ ∈ m(J).

Proof. We can assume φ′′ = Φγ,x. Then the LHS of our desired equality is ([φ, φ′](x), γ) =
(φ(φ′(x)), γ)+(φ(x), φ′(γ)). The RHS is Bm(φ,Φφ′(γ),x+Φγ,φ′(x)) = (φ(x), φ′(γ))+(φ(φ′(x)), γ). �

3.2. The form on h(J)0. Define an invariant pairing Bh on h(J)0 by

Bh((φ, a, γ), (φ′, a′, γ′)) = Bm(φ, φ′)− (a, γ′)− (a′, γ).

Here φ, φ′ ∈ m(J), a, a′ ∈ J and γ, γ′ ∈ J∨.
Thinking of h(J)0 as defined via its action on WJ , as opposed to its description via the 3-step

Z-grading, it is natural to ask how the pairing Bh looks like on elements of the form Φw,w′ . One
has the following:

Bh(Φw1,w′1
,Φw2,w′2

) = −2
(
〈w1, w

′
2〉〈w′1, w2〉+ 〈w1, w2〉〈w′1, w′2〉

)
+ 12(w1, w

′
1, w2, w

′
2)

for w1, w
′
1, w2, w

′
2 ∈WJ . The pairing Bh satisfies

Bh(Φw,w′ , φ) = 2〈w, φ(w′)〉.

That the map Φ : Sym2(WJ) → h(J)0 is surjective follows from the surjectivity of J∨ ⊗ J →
m(J) and [Pol20a, Proposition 3.4.4].

3.3. The form on g(J). Define a symmetric pairing Bg : g(J)⊗ g(J)→ k via

Bg(φ+ v ⊗ w, φ′ + v′ ⊗ w′) = B0(φ, φ′)− 〈v, v′〉〈w,w′〉.

Here B0 is the invariant symmetric pairing on g(J)0 defined by

B0(φ2 + φJ , φ
′
2 + φ′J) = Bsl(V2)(φ2, φ

′
2) +Bh(φJ , φ

′
J)

for φ2, φ
′
2 ∈ sl2 and φJ , φ

′
J ∈ h(J)0.

The pairing

Bsp(W )(w1w
′
1, w2w

′
2) = −2(〈w1, w2〉〈w′1, w′2〉+ 〈w′1, w2〉〈w1, w

′
2〉).

On sl2, this is the same as the trace pairing Bsl2(V2)(X,X
′) = tr(XX ′).

Lemma 3.3.1. The pairing Bg on g(J) is invariant, i.e. Bg([x1, x3], x2) = −Bg([x2, x3], x1) for
all x1, x2, x3 in g(J).
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Proof. Writing out both Bg([x1, x3], x2) and −Bg([x2, x3], x1), one finds that the form Bg is
invariant if and only if

2〈w, φ(w′)〉 = B0(Φw,w′ , φ)

and
2〈v, φ(v′)〉 = B0(v · v′, φ)

for all v, v′ ∈ V2, w,w′ ∈WJ , and φ ∈ g(J)0. These properties of B0 were discussed above. �

3.4. The form on g(J) again. One can also express the invariant bilinear form in terms of
the Z/3-grading. If one does this, one gets as follows.

The form Bg on g(J) restricts to the form on sl3 given by Bg(m1,m2) = tr(m1m2) for m1,m2 ∈
End(V3). This form Bg on g(J) is given as follows:

• On sl3: Bg(v ⊗ φ, v′ ⊗ φ′) = φ(v′)φ′(v)
• On m(J)0: Bg(φ1, φ2) = Bm(φ1, φ2).
• On V3 ⊗ J ⊕ V ∨3 ⊗ J∨: Bg(v ⊗X, δ′ ⊗ γ′) = −δ′(v)(X, γ′).
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Part 2

Arithmetic invariant theory





CHAPTER 5

Bhargava’s Higher Composition Laws I

1. Composition of 2× 2× 2 cubes

We make some of the notation and definitions and define the bijection.
Set A = Z × Z × Z. We let S = SD be the quadratic ring of discriminant D. Thus SD =

Z[y]/(y2 −Dy + D2−D
4 ). We let τ denote the image of y in S, so that τ2 −Dτ + D2−D

4 = 0. Thus

one should think of τ as D+
√
D

2 . We set E = S ⊗Q and ω the element
√
D in E.

Set WA = Z2 ⊗ Z2 ⊗ Z2 (tensor product of row vectors), so that WA has a right action of
GL2(A) = GL2(Z)3. One writes an element of WA as a four tuple (a, b, c, d) where a, d ∈ Z and
b, c ∈ A. We denote by q the quartic form on WA and note that q(v) is a square modulo 4 for all
v ∈WA.

As proved by Bhargava [Bha04a], we will relate triples of ideal classes for SD for D 6= 0 a
square modulo 4 to elements v ∈WA with q(v) = D.

We begin with some notation. If r = (r1, r2) ∈ A2, so that r1 = (r11, r12, r13) and r2 =
(r21, r22, r23), we define r! ∈WA as

r! = (r11, r21)⊗ (r12, r22)⊗ (r13, r23)

= (r11r12r13, (r21r12r13, r11r22r13, r11r12r23), (r11r22r23, r21r12r23, r21r22r13), r21r22r23).

Note that r! is rank one.
Suppose I = (I1, I2, I3) is a triple of fractional S-ideals, and b = (b1, b2) is a basis for I so that

b1 = (b11, b12, b13) and b2 = (b21, b22, b23) with bij ∈ E. That b is a basis for I means Ij = Zb1j⊕Zb2j
for j = 1, 2, 3. Given a choice of τ ∈ S, which is called an orientation, one defines the norm
N(I; b, τ) as follows. There is a unique g ∈ GL2(A⊗Q) = GL2(Q)3 so that (b1, b2) = (τ, 1)g, i.e.,
g = (g1, g2, g3) and (b1j , b2j) = (τ, 1)gj . Now set N(I; b, τ) = det6(g) := det(g1) det(g2) det(g3).

Definition 1.0.1. Suppose I, b, τ as above, and β ∈ E×. The data (I, b, τ, β) is said to be
balanced if

(1) β−1x1x2x3 ∈ S for all xj ∈ Ij . Equivalently, β−1b! ∈WA ⊗ S.
(2) NE/Q(β) = N(I; b, τ).

We now make a definition of equivalence of types of data (I, b, β).

Definition 1.0.2. One says that two triples (I, b, β) and (I ′, b′, β′) are equivalent if there exists
x = (x1, x2, x3) ∈ E× × E× × E× with

• I ′ = xI
• b′ = xb
• β′ = x1x2x3β.

Associated to an equivalence class of balanced data [I, b, β], we define an element v ∈ WA as
follows. One set X(I, b, β) = β−1b! ∈ WA ⊗ S and one lets v be the coefficient of τ . so that
X(I, b, β) = τv + v′ for unique v, v′ ∈WA.

The following theorem is essentially one of the results of [Bha04a], and is a special case of one
the main results of [Pol18].
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Theorem 1.0.3. Suppose D 6= 0 is a square modulo 4 and S is the oriented quadratic ring
of discriminant D. The association (I, b, β) 7→ v defines a bijection between equivalence classes
of triples of balanced data and elements v ∈ WA with q(v) = D. Moreover, this bijection is
equivariant for the action SL2(Z)3 on both sides, with SL2(Z)3 acting on the data [(I, (b1, b2), β)]
as [(I, (b1, b2), β)] 7→ [(I, (b1, b2)g, β)].

We will now describe the inverse map.
To do so, we begin by defining the quadratic covariant S(v) ∈ M2(A ⊗Q) = M2(Q)3 for an

element v ∈WA. Namely, if v = (a, b, c, d), then

S(v) =

(
b# − ac ad− cb− tr(ad− bc)/2

ad− bc− tr(ad− bc)/2 c# − db

)
.

This is three 2×2 symmetric matrices which are half-integral, or in other words, 3 binary quadratic
forms. See [Pol18, Example 4.4.2] for this written out.

Let J2 =
(

0 1
−1 0

)
.

Proposition 1.0.4. One has S(v)J2S(v) = − q(v)
4 J2. In other words, these three binary qua-

dratic forms have the same discriminant, q(v).

Proof. This is proved in a more general situation in [Pol18, Proposition 4.4.1]. �

Now set Rr(v) = 2J2S(v), so that Rr(v)2 = q(v).

Proposition 1.0.5. For g ∈ GL2(A⊗Q) = GL2(Q)3, one has Rr(v · g) = det6(g)g−1Rr(v)g.

Proof. One can check this on generators, as is done in [Pol18]. �

Now set Ω(v) = q(v)+Rr(v)
2 , which one can check is in M2(Z). Note that Ω2 −DΩ + D2−D

4 = 0.

Thus Ω(v) defines an action of SD on the column vectors A2. This will give the triple of S-modules
associated to the vector v.

To embed this module into AE = E×E×E, we proceed as follows. Set ε = ε(v) = 1
2 + 1

2ωRr(v).
Moreover, define

• X(v, ω) = ωv+v[

2

• X(v,−ω) = −ωv+v[

2 .

Now, if ` = (`1, `2) ∈ A2
Q = (Q×Q×Q)2 is a row vector, we define

(1) I(`) = `ε(v)A2

(2) b(`) = `ε(v) = (b1, b2)
(3) β(`) = ω−3〈`!, X(v,−ω)〉.

Proposition 1.0.6. The row vector ` can be chosen so that I(`) is a fractional ideal and
β(`) ∈ E×. Different choices of such ` yield equivalent data. Moreover, for these `, the data
I(`), b(`), β(`) is balanced.

Proof. This is proved in [Pol18]. �

We can now state the inverse bijection to the theorem above.

Theorem 1.0.7. The maps [(I, b, β)] 7→ v and v 7→ [I(`), b(`), β(`)] define inverse bijections
between the set of balanced data and the v ∈ WA with q(v) = D. These bijections are equivariant
for the action of SL2(Z)3.

Recall that we already know that the element X(v, ω) is rank one. One of the key steps in the
proof of the above theorem is to write this rank one element explicitly in terms of the rank one
elements b! for b ∈ A2

E = (E × E × E)2. In fact, one has the following result.
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Proposition 1.0.8. For all ` ∈ A2
Q row vectors, one has

ω3(`ε(v))! = 〈`!, X(v,−ω)〉X(v, ω).

The proposition implies that the composition W q=D
A 7→ balanced data 7→WA is the identity.
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