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Abstract. We define a notion of modular forms of half-integral weight on the quaternionic
exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients,
which are complex numbers defined up to multiplication by ±1. We analyze the minimal
modular form ΘF4

on the double cover of F4, following Loke–Savin and Ginzburg. Using
ΘF4

, we define a modular form of weight 1
2 on (the double cover of) G2. We prove that the

Fourier coefficients of this modular form on G2 see the 2-torsion in the narrow class groups
of totally real cubic fields.
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CHAPTER 1

Introduction

1.1. Main result

We introduce our main result by way of an analogy. Let Θ(z) =
∑

n∈Z q
n2

, where
q = e2πiz. As is well-known, Θ(z) is a classical holomorphic modular form of weight 1

2
and

level Γ1(4) ⊆ SL2(Z). Consider the weight 3
2

modular form

ECZ(z) := Θ(z)3 =
∑
n≥0

r3(n)qn;

here r3(n) := #{(n1, n2, n3) ∈ Z3 : n = n2
1 +n2

2 +n2
3} is the number of ways n can be written

as the sum of three squares. We have named this modular form after Cohen and Zagier, in
light of their papers [Coh75], [Zag75].

Recall now the following theorem of Gauss:

Theorem 1.1.0.1 (Gauss). Suppose n is squarefree, n ≡ 1, 2 (mod 4) and n ≥ 4. Then
r3(n) = 12 · |Cl(Q(

√
−n))|, 12 times the class number of the associated quadratic imaginary

field.

Thus the Fourier coefficients of ECZ(z) see the class numbers of imaginary quadratic
fields. Our main result is the construction of an analogous modular form ΘG2 of weight 1

2
on

G2, whose Fourier coefficients see the 2-torsion in the narrow class groups of totally real cubic
fields. In particular, we define a notion of modular forms of half-integral weight on certain
exceptional groups, very similar to the integral weight theory [GGS02]. We prove that
these modular forms, which are now automorphic forms on certain non-linear double covers
of these exceptional groups, have a robust notion of Fourier coefficients. We then construct
a particular interesting example ΘG2 on G2 and partially calculate its Fourier expansion.

To motivate our construction of ΘG2 , observe that one has a commuting pair SL2× SO(3) ⊆
Sp6. One can also think of ECZ(z) as the restriction to SL2 of a weight 1

2
Siegel modular

theta-function: ECZ(z) = ΘSp6(diag(z, z, z)), where

ΘSp6(Z) =
∑

v=(n1,n2,n3)∈Z3

e2πivZvt

and Z is in the Siegel upper half space of degree three. Now, there is a commutative diagram
of inclusions

Sp6 F4⋃
⊆

⋃
SL2× SO(3) G2 × SO(3)

.

Following Loke–Savin [LS10] and Ginzburg [Gin19] we consider the automorphic minimal
representation on the double cover of F4. We show that the minimal representation can be
used to define a weight 1

2
modular form ΘF4 on F4, and define ΘG2 as the pullback to G2 of

ΘF4 .
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The Fourier coefficients of modular forms ϕ on G2 are parametrized by integral binary
cubic forms f(u, v) = au3 +bu2v+cuv2 +dv3, a, b, c, d ∈ Z, for which f(u, v) splits into three
linear factors over the real numbers. So, for each such binary cubic f , there is an associated
Fourier coefficient aϕ(f), which is a complex number well-defined up to multiplication by ±1.
Our main result is the explicit description of the Fourier coefficients of the weight 1

2
modular

form ΘG2 . More precisely, we can explicitly compute these Fourier coefficients aΘG2
(f) when

the binary cubic f(u, v) has d = 1. We explicate the special case of this result when the
cubic ring Z[y]/(f(1, y)) is a maximal order in a totally real cubic field.

Theorem 1.1.0.2. There is a modular form ΘG2 of weight 1
2

on G2 whose Fourier coef-
ficients satisfy the following: Suppose f(u, v) = au3 + bu2v+ cuv2 + dv3 is an integral binary
cubic form with d = 1, and that the cubic ring R = Z[y]/(f(1, y)) is a maximal order in a
totally real cubic field E = R⊗Q.

(1) If the inverse different d−1
R is not a square in the narrow class group of E, then the

Fourier coefficient aΘG2
(f) = 0.

(2) If the inverse different d−1
R is a square in the narrow class group of E, then the

Fourier coefficient aΘG2
(f) = ±24|Cl+E[2]|, plus or minus 24 times the size of the

two-torsion in the narrow class group of E.

Thus, in both cases of Theorem 1.1.0.2, the Fourier coefficient of ΘG2 corresponding to
the binary cubic f is ±24 times the number of square roots of the inverse different d−1

R in
the narrow class group Cl+E of E.

1.2. Extended introduction

In this section we outline the contents of the paper.

1.2.1. Quaternionic modular forms. As our main results concern modular forms
of half-integral weight on the quaternionic exceptional groups, we begin by reviewing the
integral weight theory. To set the stage for these quaternionic modular forms, we first recall
holomorphic modular forms.

Suppose G is a semisimple algebraic Q-group whose associated symmetric space is a
Hermitian tube domain. Then G has a notion of holomorphic modular forms. These can be
thought of as very special automorphic forms forG, which are closely connected to arithmetic.
They have a classical Fourier expansion and Fourier coefficients, and these Fourier coefficients
often encode arithmetic data.

Among the exceptional Dynkin types, only E6 and E7 have a real form with a Hermitian
symmetric space, and only E7 has a real form with an Hermitian tube domain. So, if one is
interested in studying a class of special automorphic forms on, say, G2, F4 or E8, there is not
an obvious place to look for such objects. Nevertheless, beginning with work of Gross and
Wallach [GW94, GW96] and developed in work of Wallach [Wal03] and Gan–Gross–Savin
[GGS02], a theory of special automorphic forms on the exceptional algebraic groups began
to emerge.

These special automorphic forms have been dubbed quaternionic modular forms. For
each exceptional Dynkin type, there is a so-called quaternionic real form: for G2 and F4,
this is the split real form, while for E6, E7 and E8 this is the real form with real rank equal
to four. The quaternionic modular forms are special automorphic forms on reductive groups
G over Q for which G(R) is a quaternionic real group.
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The real quaternionic exceptional groups never have a symmetric space with complex
structure. However, these groups share similar structures, and the quaternionic modular
forms on these groups share similar properties. To be more specific, suppose G is an adjoint
exceptional group with G(R) quaternionic. Then the maximal compact subgroup KG of
G(R) is of the form (SU(2)× L)/µ2(R), for a compact group L that depends upon G. Let
V2 denote the standard representation of SU(2) and for a positive integer ` let V` denote
the representation of KG that is the representation Sym2`(V2) of the SU(2) factor and the
trivial representation of the L-factor. A quaternionic modular form on G of weight ` is an
automorphic function ϕ : G(Q)\G(A)→ V` satisfying

(1) ϕ(gk) = k−1 · ϕ(g) for all k ∈ KG and g ∈ G(A)
(2) D`ϕ ≡ 0 for a certain specific differential operator D`.

This is the definition from [Pol20], which is a slight generalization and paraphrase of the
definition from [GGS02], where quaternionic modular forms are defined in terms of the
quaternionic discrete series representations of the group G(R).

To make this definition precise, of course we must specify the differential operator D`.
Let the notation be as above. Write g0 = k0 ⊕ p0 for the Cartan decomposition of the Lie
algebra g0 of G(R). Then, as a representation of KG, one has p := p0 ⊗ C ' V2 ⊗W for
a certain symplectic representation W of L. Let {Xα}α be a basis of p and {X∨α}α be the

dual basis of p∨. For ϕ satisfying ϕ(gk) = k−1 · ϕ(g), define D̃`ϕ =
∑

αXαϕ⊗X∨α . Here

Xαϕ denotes the right regular action, and D̃`ϕ is valued in

V` ⊗ p∨ ' Sym2`+1(V2) �W ⊕ Sym2`−1(V2) �W.

We let pr : V` ⊗ p∨ → Sym2`−1(V2) � W be the KG-equivariant projection and define

D` = pr ◦ D̃`.
The relationship of the definition of quaternionic modular forms with representation

theory is as follows. Suppose π is an irreducible (g0, KG)-module embedded in the space
of automorphic forms on G(Q)\G(A) via a map α. Suppose moreover that π has minimal
KG-type V`. Then out of V` and α one can construct a quaternionic modular form of weight
`: for g ∈ G(A) set

ϕ(g) =
∑̀
j=−`

α(xj)(g)⊗ x∨j ,

where {xj} is a basis of V` ⊆ π` and x∨j is the dual basis of V∨` ' V`. Using the fact that
V` is the minimal K-type of π, it is easy to show that ϕ is a quaternionic modular form of
weight `. If ` is sufficiently large depending on G, there is a discrete series representation π`
of G(R) whose minimal KG-type is V`, so embeddings of these discrete series representations
into the space of automorhpic forms on G give rise to quaternionic modular forms of weight
`.

Modular forms of integral weight ` have been studied in [GGS02], [Wei06], [Pol20,
Pol22a, Pol21, Pol22c] and [Dal21]. For an introduction to what is known about them,
we refer to [Pol22b]. The main result of [Pol20] is that quaternionic modular forms have
a robust, semi-classical Fourier expnansion, similar to the Fourier expansion of classical
holomorphic modular forms on tube domains. This result generalized and refined work of
Wallach [Wal03].

To explain this Fourier expansion, we recall another common feature of the quaternionic
exceptional groups. While none of them has a parabolic with abelian unipotent radical, they
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all have a Heisenberg parabolic P = MN whose unipotent radical N ⊇ Z = [N,N ] ⊇ 1
is two-step, with one-dimensional center Z. Thus if ϕ is an automorphic form on G, one
can take the constant term ϕZ of ϕ along Z, and Fourier-expand the result along N/Z:
ϕZ =

∑
χ ϕχ where ϕχ(g) =

∫
N(Q)\N(A)

χ−1(n)ϕ(ng) dn. The main result of [Pol20] is an

explication of this Fourier expansion for quaternionic modular forms ϕ of weight `. Namely,
it is proved in [Pol20] that there are certain completely explicit functions Wχ : G(R)→ V`

so that if ϕ is a weight ` modular form, then ϕχ(g) = aϕ(χ)(gf )Wχ(g∞) for some locally
constant function aϕ(χ) : G(Af )→ C; here g = gfg∞ is the factorization of g into its finite-
adelic and infinite parts. The complex numbers aϕ(χ)(1) are called the Fourier coefficients
of ϕ. This definition is designed to mimic the classical definition of Fourier coefficients of
holomorphic modular forms.

While defined in a purely transcendental way, the Fourier coefficients of a quaternionic
modular form ϕ appear to have arithmetic significance; for evidence of this claim, see
[Pol22a, Pol21, Pol22c]. One purpose of the present paper is to add to this growing evi-
dence that quaternionic modular forms have arithmetically-interesting Fourier coefficients.

1.2.2. The double cover of quaternionic exceptional groups. In this paper, we
define and study certain quaternionic modular forms of half-integral weight and their Fourier
coefficients. To define these notions, suppose again that G is an adjoint quaternionic ex-
ceptional group. Then, since G(R) deformation retracts onto KG ' (SU(2) × L)/µ2(R),

and KG has a two-cover K̃G ' SU(2) × L, the group G(R) has a two cover G̃. Choosing

a basepoint of G̃ above 1 ∈ G(R) makes G̃ into a connected Lie group, which is a central
µ2(R)-extension of G(R)

1→ µ2(R)→ G̃→ G(R)→ 1,

and K̃G can be identified with a maximal compact subgroup of G̃.
Our first result, which is perhaps of independent interest, is an explicit description of these

Lie groups G̃. To motivate it, let h = SL2(R)/ SO(2) denote the upper half plane and recall
that one can identify the double cover of SL2(R) with pairs (g, jg) where g = ( a bc d ) ∈ SL2(R)
and jg : h→ C× is a holomorphic function that satisfies jg(z)2 = cz+d. If nowG is an adjoint
quaternionic exceptional group, with symmetric space XG = G(R)/KG, we define a factor
of automorphy jlin : G(R) ×XG → GL3(C), satisfying jlin(g1g2, x) = jlin(g1, g2x)jlin(g2, x).
We then consider the set of pairs (g, jg) with g ∈ G(R) and jg : XG → GL2(C) continuous
that satisfy Sym2(jg(x)) = jlin(g, x). It is easy to see that this set forms a group with
multiplication (g1, jg1(x))(g2, jg2(x)) = (g1g2, jg1(g2x)jg2(x)).

Theorem 1.2.2.1. With a certain topology on the set of pairs (g, jg) above, this set can

be identified with the connected topological group G̃.

When G is a split, simply-connected algebraic group, such as G2 or F4, Steinberg [Ste16]

and Matsumoto [Mat69] have defined a 2-cover G̃(2)(k) of G(k) for every local field k. When

k = R and G = G2 or F4, this 2-cover can be identified with the 2-cover G̃. The group

G̃(2)(k) can be constructed by generators and relations [Ste16], as we recall in Section 2.4.

The groups G̃(2)(Qv) can be glued together to produce a 2-cover G̃(2)(A) of G(A). It follows

from the construction of G̃(2)(A) and the global triviality of the Hilbert symbol that the

group of rational points G(Q) splits into G̃(2)(A).
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Now suppose ` ≥ 1 is an odd integer. Let V`/2 = Sym`(V2) be the representation of

K̃G that is the `th symmetric power of V2, as a representation of SU(2), and is the trivial
representation of L. We define a quaternionic modular form ϕ for G of weight `/2 to be a

V`/2-valued automorphic function ϕ : G(Q)\G̃(2)(A)→ V`/2 that satisfies

(1) ϕ(gk) = k−1 · ϕ(g) for all g ∈ G̃(2)(A) and k ∈ K̃G and
(2) D`/2ϕ ≡ 0.

Here the differential operator D`/2 is defined exactly as D` was above. If U ⊆ G(Af ) is an

open compact subgroup that splits into G̃(2)(A), and ϕ is stabilized by U , then we say ϕ has
level U .

To study modular forms of half-integral weight on the group G̃(2)(A), it helps to have
explicit open compact subgroups U ⊆ G(Af ) together with an explicit splitting sU : U →
G̃(2)(A). This is accomplished in the following result in case G is F4.

Theorem 1.2.2.2. When G = F4, there is an explicit, large open compact subgroup
UF4(4) that splits into the double cover.

When p > 2, it is proved by Loke and Savin [LS10] that the hyperspecial maximal

compact subgroup of G(Qp) splits into G̃(2)(Qp). Thus it remains to analyze the case p = 2,
and it is here where we do detailed computations: in Section 2.5, we produce an explicit
(non-maximal) compact open subgroup of F4(Q2) that splits into the double cover.

1.2.3. The Fourier expansion of half-integral weight modular forms. With the

groups G̃(2)(A) reviewed and the notion of quaternionic modular form defined, it makes
sense to ask about examples and properties of quaternionic modular forms of half-integral
weight. The main property we prove is the existence of a robust, semi-classical Fourier
expansion, analogous to the integral-weight theory. To make sense of Fourier expansions

on the covering groups G̃(2)(A), one begins with the observation that the unipotent group

N(Qv) splits uniquely into G̃(2)(Qv) for every place v. Consequently, one can ask about the

Fourier expansion of ϕZ(g) if ϕ(g) is an automorphic function on G̃(2)(A).
To produce the desired Fourier expansion, we analyze generalized Whittaker functions

on the groups G̃ ' G̃(2)(R). If χ : N(R)→ C× is a nontrivial unitary character, and ` ≥ 1
is an odd integer, a generalized Whittaker function of type (N,χ, `/2) is a smooth function

F : G̃→ V`/2 satisfying

(1) F (gk) = k−1 · F (g) for all g ∈ G̃ and k ∈ K̃G;

(2) F (ng) = χ(n)F (g) for all n ∈ N(R) and g ∈ G̃;
(3) D`/2F ≡ 0.

With regard to these generalized Whittaker functions, we prove the following theorem, which
is the analogue in the half-integral weight case of the main result of [Pol20]. To state the
result, we recall that if G is a quaternionic exceptional group then there is a notion of
“positive semi-definiteness” of nontrivial unitary characters χ of N(R). We let M denote a
particular fixed Levi subgroup of the Heisenberg parabolic P , to be recalled in Section 2.2.

Theorem 1.2.3.1. Let the notation be as above, with χ a non-trivial unitary character
of N(R).

(1) Suppose F is a moderate-growth generalized Whittaker function of type (N,χ, `/2),
and χ is not positive semi-definite. Then F is identically 0.
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(2) Suppose χ is positive semi-definite and ` is fixed. There are a pair of nonzero
functions W 1

χ(g) and W 2
χ(g) that satisfy the following properties:

(a) W 2
χ(g) = −W 1

χ(g);

(b) the W j
χ are moderate growth generalized Whittaker functions of type (N,χ, `/2);

(c) the set {W 1
χ(g),W 2

χ(g)} depends continuously on χ;

(d) if r is in the derived group [M,M ](R) and r̃ is a preimage of r in G̃, then the
set {W 1

χ(r̃g),W 2
χ(r̃g)} = {W 1

χ·r(g),W 2
χ·r(g)}.

(e) Moreover, if F is moderate growth generalized Whittaker function of type (N,χ, `/2),
then there is a pair of complex numbers aχ,2(F ) = −aχ,1(F ) so that F (g) =
aχ,j(F )W j

χ(g) for j = 1, 2.

Note that, if ζ is the non-identity element of the preimage of {1} in G̃, then W 1
χ(ζg) =

W 1
χ(gζ) = −W 1

χ(g) = W 2
χ(g), so that one really needs both W 1

χ and W 2
χ to appear in property

2(d) of Theorem 1.2.3.1.

The Fourier expansion of quaternionic modular forms on G̃ of weight `/2 follows imme-
diately from Theorem 1.2.3.1:

Corollary 1.2.3.2. Suppose ϕ is a quaternionic modular form on G̃(2)(A) of weight

`/2, and g ∈ G̃(2)(R) ' G̃. Then there is a lattice Λ in (N(Q)/Z(Q))∨ so that

ϕZ(g) = ϕN(g) +
∑

16=χ∈Λ

ajϕ(χ)W j
χ(g)

for certain complex numbers ajϕ(χ) that satisfy a1
ϕ(χ)W 1

χ(g) = a2
ϕ(χ)W 2

χ(g).

The elements ajϕ(χ) ∈ C/{±1} are called the Fourier coefficients of ϕ. Note that the

Fourier coefficients are defined in terms of the restriction of ϕ to the group G̃(2)(R) of real
points.

1.2.4. The automorphic minimal representation. One of the first examples of
quaternionic modular forms of integral weight is given by the automorphic minimal rep-
resentation on quaternionic E8, which was produced by Gan [Gan00], see also [Pol22a].
The double cover of F4 has an automorphic minimal representation; this representation was
defined and studied by Loke-Savin [LS10] and further analyzed by Ginzburg [Gin19]. Our
first example of a modular form of half-integral weight, in fact of weight 1

2
, comes from this

automorphic minimal representation on F̃
(2)
4 (A).

The following is our main result concerning the automorphic minimal representation on

F̃
(2)
4 (A). To state the result, let J0 = Sym2(Z3) denote the 3×3 integral symmetric matrices,

and let J∨0 be the dual lattice with respect to the trace pairing, so that J∨0 is the set of half-
integral symmetric 3 × 3 matrices. If N denotes the unipotent radical of the Heisenberg
parabolic of F4, then there is an embedding of the lattice W (Z)∨ = Z⊕ J∨0 ⊕ J∨0 ⊕ Z in the
space of characters W (Q)∨ = (N(Q)/Z(Q))∨ = W (Z)∨ ⊗Q.

Theorem 1.2.4.1. Let Πmin = Πmin,f ⊗ Πmin,∞ denote the automorphic minimal rep-

resentation of F̃
(2)
4 (A). The minimal K̃F4-type of Πmin,∞ is V2 = V1/2. Consequently, if

vf ∈ Πmin,f , there is an associated quaternionic modular form θ(vf ) of weight 1
2

on F̃
(2)
4 (A).

Moreover,
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(1) The (a, b, c, d) ∈ W (Q)∨ Fourier coefficient of θ(vf ) is zero unless (a, b, c, d) is “rank
one”;

(2) the vector vf can be chosen so that θ(vf ) (cf. Theorem 1.2.2.2) has level UF4(4) and
has nonzero (0, 0, 0, 1) ∈ W (Z)∨ Fourier coefficient.

The fact that the minimal K̃F4-type of π∞ is V1/2 follows easily from work of [ABP+07].
As explained above, this implies that there are associated weight-1

2
modular forms θ(vf ) on

F4. The statement that the Fourier coefficients of θ(vf ) vanish unless (a, b, c, d) is rank one is
the result [Gin19, Proposition 3] of Ginzburg, imported into our language. Where we work
hard is the last statement, that vf can be chosen so that θ(vf ) has large level and nonzero
(0, 0, 0, 1)-Fourier coefficient.

To prove this result about level and Fourier coefficients, we make some detailed com-
putations of certain twisted Jacquet modules of the automorphic minimal representation π,
especially at the 2-adic place. To do these computations, we bootstrap off of twisted Jacquet
module computations in [GPS80], which concerns the Weil representation of a double cover
of GL2(Qp).

1.2.5. A modular form on G2. Let ΘF4 denote a weight 1
2
, level UF4(4)-modular form

on F̃
(2)
4 (A), with nonzero (0, 0, 0, 1)-Fourier coefficient, as guaranteed by Theorem 1.2.4.1.

We normalize ΘF4 so that its (0, 0, 0, 1)-Fourier coefficient is ±1. There is an embedding

G̃
(2)
2 (A) ⊆ F̃

(2)
4 (A), compatible with the splittings on the rational points. Denote by ΘG2

the pullback to G̃
(2)
2 (A) of ΘF4 . Then we check that ΘG2 is a quaternionic modular form of

weight 1
2
. Our main result concerns the Fourier coefficients of ΘG2 .

To describe these Fourier coefficients, first note that if N is the unipotent radical of the
Heisenberg parabolic of G2, then (N(Q)/Z(Q))∨ can be identified with the rational binary
cubic forms f(u, v) = au3 + bu2v+ cuv2 +dv3. It is easy to show that the Fourier coefficients
of ΘG2 vanish outside the lattice of integral binary cubic forms. We give a formula for the
Fourier coefficient aΘG2

(f) for every integral binary cubic form f with d = 1.
To state (the main part) of this formula, we introduce a notation concerning cubic rings,

following Swaminathan [Swa21]. Let R be an order in a totally real cubic field E = R⊗Q.
Let d−1

R be the inverse different of R, i.e., the fractional R ideal consisting of those x ∈ E
for which trE(xλ) ∈ Z for all λ ∈ R. Say that a pair (I, µ) of a fractional R ideal I and a
totally positive unit µ ∈ E×>0 is balanced if

(1) µI2 ⊆ d−1
R

(2) N(µ)N(I)2disc(R/Z) = 1.

Thus, if R is the maximal order in E, (I, µ) is balanced if and only if µI2 = d−1
R . Here N(µ)

is the norm of µ and N(I) (well-defined up to multiplication by ±1) is the determinant of a
linear transformation of E that takes a Z-basis of R to a Z-basis of I.

Let QR be the set of balanced pairs (I, µ) up to equivalence, where we say (I, µ) is
equivalent to (I ′, µ′) if there exists β ∈ E× such that I ′ = βI, µ′ = β−2µ. The set QR is
always finite and sometimes empty. If R is the maximal order and QR is nonempty, then
we show in Section 3.5 that |QR| = |Cl+E[2]| where Cl+E[2] is the 2-torsion in the narrow class
group of E.

Theorem 1.2.5.1. Let the notation be as above, and suppose the binary cubic form f(u, v)
has d = 1. Denote by R = Z[y]/(f(1, y)), and suppose that R ⊗ Q is a totally real cubic
field. The weight 1

2
modular form ΘG2 on G2 has Fourier coefficient aΘG2

(f) = ±24|QR|.
10



We also give an arithmetic interpretation of the Fourier coefficients of ΘG2 in the case
that R⊗Q is of the form Q×K for K a real quadratic field. See Section 3.5.2.

1.2.6. Acknowledgements. We thank Benedict Gross for his comments on a previous
version of this manuscript, which have improved the exposition of this work. We also thank
Gordan Savin for helpful comments.
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CHAPTER 2

Group theory

In this chapter, we work out many of the group-theoretic aspects of this paper. We prove
Theorems 1.2.2.1 and 1.2.2.2 of the introduction.

2.1. Central extensions: the general picture and conventions

Quaterionic modular forms of half-integral weight live on certain central extensions of
adjoint forms of exceptional groups. We therefore begin by discussing some generalities
about extensions of the group of points of algebraic groups and setting certain conventions.
The theory is much more transparent in the simply connected case (which is also our setting
when G = G2, F4, or E8), so we recall this setting first. We will only work over Q and its
localizations, so we restrict our discussion to this case. Let p be a place of Q and let Qp be
the associated local field; we set Q∞ = R.

Assume that G is a simply-connected, simple linear algebraic group over Q and consider
the topological group G(Qp) for p ≤ ∞. In [Del96], Deligne constructs a canonical extension

1 −→ H2(Qp, µ
⊗2
n ) −→ G̃(n)(Qp) −→ G(Qp) −→ 1

for any n ∈ N. This construction relies heavily on the cohomology of the classifying space
BG and on the construction of the Galois symbol by Tate [Tat76]; we will not review this
construction further.

It is known [Del96, MS82] that if N is the number of roots of unity in Qp, then

(1) H2(Qp, µ
⊗2
n ) ∼= K2(Qp)/(n,N)K2(Qp) ∼= µ(n,N)(Qp)

where K2(Qp) is the Milnor K-theory of Qp. In particular, for any p ≤ ∞, we obtain a
canonical double cover

(2) 1 −→ µ2(Qp) −→ G̃(Qp) := G̃(2)(Qp) −→ G(Qp) −→ 1

which satisfies the following properties:

(1) when p =∞ and G(R) is not topologically simply connected, then G̃ is the unique
connected topological double cover of G(R) (note that π1(G(R)) is either Z and
Z/2Z, so this is well defined);

(2) when G is Q-split, then for all p the group G̃(Qp) agrees with the topological double
cover constructed by Steinberg and Matsumoto via generators and relations.

Both of these facts are relevant to us: in Section 2.3 we give an explicit construction for

G̃(R) for quaternionic exceptional groups that is amenable to the definition of generalized
Whittaker functions. On the other hand, our main applications to modular forms involve
only the split groups F4 and G2. In order to make certain local calculations, we recall the

Steinberg–Matsumoto presentation of G̃(Qp) in Section 2.4.
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If A = AQ is the adele ring, Deligne similarly constructs a canonical central extension
of G(A) by µ2(Q), so that we have a short exact sequence of locally-compact topological
groups

(3) 1 −→ µ2(Q) −→ G̃(A) −→ G(A) −→ 1.

This central extension splits canonically overG(Q), allowing for the definition of automorphic

forms on this group. There is a decomposition G̃(A) =
∏

p G̃(Qp)/µ
+
2 , where G̃(Qp) is the

local cover (2) and µ+
2 denotes the subgroup of

⊕
p µ2(Qp) with product of terms being 1.

When G is a simply-connected, semisimple group over Q or Qp for p ≤ ∞ (in particular,
when G is of type G2, F4, or E8), we always consider this canonical double cover of Deligne.

When our reductive group G is no longer semisimple and simply connected, such as the
adjoint forms of E6 and E7 or for Levi subgroups, there is no canonical central extension

of G̃(Qp) by µ2(Q2); indeed, we will deal with two distinct double covers of GL2(Qp) in
Section 4.3. The classification of a large class of central extensions (known as Brylinski–
Deligne covers) is given in [BD01], where the authors classify extensions of G by the Milnor
K-theory sheaf K2, viewed as sheaves of groups on the big Zariski site over Qp. Given such
a central extension of sheaves of groups over Spec(Qp)

K2 −→ G −→ G,

one obtains a topological double cover by taking Qp-points and pushing out by the Hilbert
symbol

K2(Qp) G(Qp) G(Qp)

µ2(Qp) G̃(Qp) G(Qp).

(·,·)2 =

Working globally, Brylinski and Deligne also extend the adelic formulation (3) to this more
general setting. The connection between Deligne’s cover and extensions by K2 may be seen
in the identification (1). Indeed, when G is semisimple and simply connected, it is shown in
[BD01, Section 4] that for any p, there exists a central extension of sheaves of groups over
Spec(Qp) such that the bottom row of the above diagram recovers the sequence (2).

Suppose now that G is an adjoint exceptional group over Q of type E6 or E7 such
that G(R) is quaternionic (recalled in the next section). In this setting, we construct a

double cover G̃ of G(R) in Section 2.3. Our convention is that we assume that G is a given
Brylinski–Deligne cover of G satisfying that the induced double cover of G(R) agrees with

our construction up to isomorphism. This is automatic if the pushout G̃(R) is connected
and non-linear.

Finally, suppose that k is either a localization of Q or k = A and let G̃(k) be a given

topological double cover of G(k). If S is a subset of G(k), we denote by S̃ its inverse image

in G̃(k). If U ⊂ G is a unipotent subgroup, then it is known that G̃(k) splits canonically

over U(k); we use a standard abuse of notation and simply denote by U(k) ⊂ Ũ(k) the

corresponding subgroup of G̃(k).
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2.2. Review of quaternionic exceptional groups

In this section, we review notation and constructions from [Pol20] concerning quater-
nionic exceptional groups. For more details, we refer the reader to [Pol20, Sections 2,3,4].

First recall the notion of a cubic norm structure J . This is a finite dimensional vector
space J over a field k that comes equipped with a homogeneous degree three norm map
NJ : J → k, a non-degenerate trace pairing ( , ) : J ⊗ J → k, a distinguished element
1J ∈ J , and a quadratic map # : J → J∨ ' J . The relevant examples of cubic norm
structures for this paper are J = k and J = H3(C), the 3 × 3 hermitian matrices over a
composition k-algebra C.

Out of a cubic norm structure J , one can create various algebraic groups. First, denote
by MJ the identity component of the algebraic group of linear transformations of J that
preserve the norm NJ up to scaling. Let M1

J denote the subgroup of MJ with scaling factor
equal to 1, and let AJ be the subgroup of M1

J that fixes the element 1J of J .
We next discuss the so-called Freudenthal construction. If J is defined over the field k of

characteristic 0, define WJ = k⊕J⊕J∨⊕k, another vector space over k. One puts on WJ a
certain non-degenerate symplectic form 〈 , 〉 and a quartic form q : WJ → k. The algebraic
group HJ is defined to be the identity component of the set of pairs (g, ν(g)) ∈ GL(WJ)×GL1

that satisfy 〈gw1, gw2〉 = ν(g)〈w1, w2〉 and q(gw) = ν(g)2q(w). The map ν : HJ → GL1 is
called the similitude, and H1

J is defined to be the kernel of ν.
The next algebraic structure defined out of J is a Lie algebra g(J). There are two

equivalent ways to define g(J). In the first way, one defines

g(J) = sl3 ⊕m0
J ⊕ V3 ⊗ J ⊕ (V3 ⊗ J)∨.

Here m0
J is the Lie algebra of M1

J and V3 is the standard three-dimensional representation
of sl3. A Lie bracket can be put on g(J); see [Pol20, section 4.2.1]. We refer to this way of
thinking about g(J) as the “Z/3-model”. Let Eij be the 3× 3 matrix with a 1 in the (i, j)
position and 0’s elsewhere. If X =

∑
i,j aijEij has trace 0, we will sometimes consider X as

an element of g(J) via the inclusion sl3 ⊆ g(J).
In the second way to define g(J), one puts

g(J) = sl2 ⊕ h0
J ⊕ V2 ⊗WJ .

Here h0
J is the Lie algebra of H1

J and V2 is the standard two-dimensional representation of
sl2. We refer to this way of looking at g(J) as the Z/2-model. An explicit isomorphism
between the Z/3-model and the Z/2-model is given in [Pol20, section 4.2.4]. An algebraic
group GJ can now be defined as Aut0(g(J)), the identity component of the automorphisms
of the Lie algebra g(J).

The algebraic groups AJ ,MJ , HJ , GJ fit into the Freudenthal magic square, as J = H3(C)
varies with dimC = 1, 2, 4, 8. In table 1, we list the absolute Dynkin types of the above
groups. The magic square can be extended to a magic triangle, which was studied in [DG02].
We refer the reader to [DG02] for properties of this triangle.

In the algebraic group GJ we fix a specific parabolic subgroup PJ , called the Heisenberg
parabolic; see [Pol20, section 4.3.2]. The subgroup PJ can be defined as the stabilizer of the
line kE13 ⊆ g(J). It has HJ as a Levi subgroup and unipotent radical NJ ⊇ Z ⊇ 1 which is
two-step. Here Z = [NJ , NJ ] is the exponential of the line kE13, and one can identify NJ/Z
with WJ , as a representation of HJ .

14



Table 1. The Freudenthal Magic Square, J = H3(C)

The group dimC = 1 dimC = 2 dimC = 4 dimC = 8
AJ A1 A2 C3 F4

MJ A2 A2 × A2 A5 E6

HJ C3 A5 D6 E7

GJ F4 E6 E7 E8

Suppose now that k = R and the trace pairing on J is positive definite. Then the
associated real groups in each row of the magic square share similar properties: the groups
AJ are all anistropic, while the groups MJ have real root system of type A2, with root spaces
that can be naturally identified with the composition algebra C.

In this setting, the groups HJ all have a real root system of type C3, with short root
spaces identified with C and long root spaces one-dimensional. Denote by H+

J the identity
component of HJ(R). The group H1

J or H+
J (which contains H1

J) has a hermitian symmetric
domain. More specifically, let HJ = {Z = X + iY : X, Y ∈ J, Y > 0}. Identify HJ with
a subset of WJ ⊗C via Z 7→ r0(Z) := (1,−Z,Z#,−NJ(Z)). Then one proves (see [Pol20,
Proposition 2.3.1]) that given g ∈ H+

J and Z ∈ HJ , there exists j(g, Z) ∈ C× so that
g · r0(Z) = j(g, Z)r0(gZ), for an element gZ ∈ HJ . This simultaneously defines an action of
H+
J on HJ and the factor of automorphy j(g, Z).

Still assuming that k = R and the trace pairing on J is positive-definite, the group GJ is
called a quaternionic group. The groups GJ in the final row of the Freudenthal magic square
now all have real root system of type F4, with short root spaces identified with C and long
root spaces one-dimensional. When J = R instead of H3(C), the group GJ is G2. We refer
to these cases by saying that GJ is a quaternionic adjoint exceptional group. In these cases,
the group GJ(R) is connected [Tha00].

Suppose GJ is an adjoint quaternionic exceptional group. Then a specific Cartan invo-
lution on its Lie algebra g(J) is defined in [Pol20, section 4.2.3]. We denote by KJ the
associated maximal compact subgroup of GJ(R). The group KJ is of the form (SU(2) ×
L0(J))/µ2(R), for a certain compact group L0(J).

In [Pol20, section 5.1], a specific sl2-triple (e`, h`, f`) of the complexified Lie algebra
of the SU(2) factor of KJ is defined. We now recall this sl2-triple. Let e = (1, 0)t and
f = (0, 1)t denote the standard basis of the two-dimensional representation of sl2 ⊆ g(J) =
sl2 ⊕ h0

J ⊕ V2 ⊗WJ . One sets e` = 1
4
(ie+ f)⊗ r0(i · 1J), f` = −e`, and h` = [e`, f`]. Here 1J

is the identity element of the cubic norm structure J .
For ` ∈ 1

2
Z≥0, set V2 = C2 and V` = Sym2`(V2), a representation of the Lie algebra

of KJ via the projection to the SU(2) factor. Using the above sl2-triple, we fix a basis of
V`, as follows. First, let x, y denote a weight basis of V2 for h` with y = f`x. Then we
let the monomials xiyj for i + j = 2` be our fixed basis of V`. When ` is an integer, the
representation V` exponentiates to a representation of KJ .

2.3. The cover in the archimedean case

In this section, we describe an explicit construction of a connected topological double
cover of the quaternionic adjoint groups GJ(R). This gives the unique non-linear double
cover of these groups.
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2.3.1. Preliminaries. Now let J be a cubic norm structure over the real numbers R,
with positive definite trace pairing. We assume J = R or J = H3(C) with C a composition
algebra over R with positive-definite norm.

Fix the sl2-triple e`, h`, f` of gJ ⊗ C, recalled above. Identify Span(e`, h`, f`) with
Sym2(V2) by sending e` 7→ x2, h` 7→ −2xy, f` 7→ −y2. This identification is KJ -equivariant;
see right before Lemma 9.0.2 in [Pol20].

We recall an Iwasawa decomposition for the group GJ(R). Let PJ = HJNJ be the
Heisenberg parabolic of GJ . Let QJ be the parabolic subgroup associated to the cocharacter
t 7→ diag(t, t, t−2) ∈ SL3 → GJ . The Lie algebra of QJ contains the root spaces where
E11+E22−2E33 acts by the weights 0, 1, 2 or 3. Moreover, QJ stabilizes Span(E13, E23) in the
Z/3-model of gJ , as one sees by checking this on the Lie algebra level. Define RJ = PJ ∩QJ

and denote by R+
J the connected component of the identity of RJ(R). Recall that KJ denotes

the maximal compact subgroup of GJ(R) associated to the Cartan involution described in
[Pol20].

Proposition 2.3.1.1. Every g ∈ GJ(R) can be written as g = rk with r ∈ R+
J and

k ∈ KJ . Moreover, if k ∈ R+
J ∩KJ , then k acts trivially on Span(e`, h`, f`).

Proof. The first part follows from the usual Iwasawa decomposition of GJ .
For the second part, let M(RJ) denote the standard Levi subgroup of RJ , so that M(RJ)

is the subgroup of HJ that is the centralizer of the cocharacter defined above. Then RJ(R)∩
KJ = M(RJ)(R) ∩ KJ . Thus RJ(R) ∩ KJ stabilizes the lines RE13 and RE23 in the Lie
algebra g(J). We claim that R+

J ∩ KJ acts trivially on these lines. To see this, observe
that R+

J ∩KJ = M(RJ)+ ∩KJ is connected as it is a maximal compact subgroup of a real
connected reductive group. The triviality of the action of R+

J ∩KJ on E13 and E23 follows.
Recall that H1

J denotes the similitude equal one subgroup of the Freudenthal group HJ .
One has H1

J(R)∩KJ acts by the scalar j(k, i ·1J) on e`; see Lemma 9.0.1 of [Pol20]. Because
R+
J ∩KJ ⊆ H1

J(R)∩KJ , R+
J ∩KJ acts by a scalar on e`. Because R+

J ∩KJ acts trivially on
E23, this scalar is 1. We deduce that R+

J ∩KJ acts trivially on e`, from which it follows that
it also acts trivially on f` and h`.

Note that for the second part, one cannot replace R+
J with RJ(R) as some elements of

RJ(R) ∩KJ act nontrivially on Span(e`, h`, f`). �

2.3.2. The double cover. For k ∈ KJ , denote by Ad(k) the action of k on the space
Span(e`, h`, f`) = Sym2(V2). Fix an R×>0-valued character χ of R+

J , to be specified later. We
define

flin : GJ(R)→ AutC(Sym2(V2)) ' GL3(C)

as flin(g) = χ(r)Ad(k) if g = rk with r ∈ R+
J and k ∈ KJ . By Proposition 2.3.1.1, flin is

well-defined, because χ(R+
J ∩KJ) = 1 as the image is a compact subgroup of R×>0.

Now, consider the symmetric space XJ = GJ(R)/KJ ; it is connected and contractible.
Define jlin(g, x) for x ∈ XJ and g ∈ GJ(R) as flin(gh)flin(h)−1 if x = hKJ . Note that jlin is
well-defined.

One has the following proposition, whose proof we omit; it follows from the fact that the
Iwasawa decomposition of GJ(R) is smooth.

Proposition 2.3.2.1. The maps

flin : GJ(R) −→ AutC(Sym2(V2)) and jlin : GJ(R)×XJ −→ AutC(Sym2(V2))

are smooth.
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We may now define G̃J .

Definition 2.3.2.2. Let G̃J be the set of pairs (g, jg) with g ∈ GJ(R) and

jg : XJ → AutC(V2)

continuous so that Sym2(jg(x)) = jlin(g, x). A multiplication is defined as

(g1, j1(x))(g2, j2(x)) = (g1g2, j1(g2x)j2(x)).

The identity is the element (1, e) where e(x) = 1 for all x.

With these definitions, it is easily checked that G̃J is a group.

A topology can be put on G̃J as follows. Let x0 = 1KJ ∈ XJ be the basepoint determined
by KJ . Now, note that given g ∈ GJ(R), there are exactly two continuous lifts XJ →
AutC(V2) of jlin(g,−) : XJ → AutC(Sym2(V2)), and that these lifts are determined by

their value at x0. Thus there is an injective map of sets G̃J → GJ(R) × GL2(C) given by

(g, jg(x)) 7→ (g, jg(x0)). We give G̃J the subspace topology of GJ(R)×GL2(C) via this map.

For g′ = (g, jg(x)) ∈ G̃J , we write j1/2(g′, x) := jg(x).

Proposition 2.3.2.3. With the above topology, G̃J is a connected topological group. The

canonical map G̃J → GJ(R) is a covering map with central µ2 kernel.

Proof. One first proves that G̃J is a topological group and G̃J → GJ(R) is a covering
space. This is an exercise in covering space theory, so we omit it.

Let us explain the connectedness of G̃J . We will check that (1, e(x)) and (1,−e(x)) are
connected by a path. Given the other claims, this suffices.

To see that (1, e(x)) is connected to (1,−e(x)), we consider h0 = ( 0 1
−1 0 ) ∈ sl2 ⊆ gJ =

sl2 ⊕ h0
J ⊕ V2 ⊗WJ . Now, by our formulas for the Cartan decomposition, h0 is in the Lie

algebra of KJ , so exp(th0) is in KJ ⊆ GJ(R). One computes that exp(th0) acts on e`, h`, f`
as

• e` 7→ e−ite`
• h` 7→ h`
• f` 7→ eitf`.

Now consider the path [0, 2π] → KJ ⊆ GJ(R) given by t 7→ exp(th0). This path is

a loop, with 2π 7→ 1. Because G̃J → GJ(R) is a covering space, it lifts to a path γ̃ :

[0, 2π] → G̃J satisfying γ̃(0) = 1. Thus j1/2(γ̃(t), x0) ∈ GL2(C) satisfies that its symmetric
square is the action on e`, h`, f` given above. Because it is continuous and the identity at
t = 0, j1/2(γ̃(t), x0) = diag(e−it/2, eit/2). Consequently j1/2(γ̃(2π), x0) = −1. This proves our
assertion. �

Note that since KJ is itself connected and the path γ̃ stays in K̃J , we see that the inverse

image K̃J of KJ is a connected compact Lie group.

Because G̃J → GJ(R) is a covering space, G̃J is uniquely a Lie group. Note also that

the map j1/2( , x0) : K̃J → AutC(V2) is a group homomorphism. Finally, we remark that R+
J

splits into G̃J as r 7→ (r, jr(x)) with jr(x) = χ(r)1/2 for all x ∈ XJ .
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2.3.3. An application. Define ν : RJ → GL1 as rE13 = ν(r)E13 and λ : RJ → GL1

as rE23 = λ(r)E23 + ∗E13. In other words, if det is the determinant of the action of RJ

on Span(E13, E23) then λ = det(·)ν−1. Define χ, the character defining flin as χ = νλ−1 =
ν2 det(·)−1. With this choice, which we will make from now on, one has the following lemma.
Let KH = H1

J(R) ∩KJ be a maximal compact subgroup of H1
J(R).

Lemma 2.3.3.1. With h ∈ H+
J , one has jlin(h, x0) = diag(j(h, i), 1, j(h, i)) via the action

on x2, xy, y2. Thus if z ∈ HJ = H1
J(R)/KH ⊆ GJ/KJ , then jlin(h, z) = diag(j(h, z), 1, j(h, z)).

Consequently, the (1, 1)-coordinate of j1/2 : H̃+
J → GL2(C) defines a squareroot of j(h, z).

Proof. Let PS denote the Siegel parabolic of HJ , so that PS = HJ ∩ RJ . Suppose
h ∈ H+

J is h = pk with p ∈ PS(R)+ and k ∈ KH ⊆ H1
J(R). Then

j(p, i) = 〈pr0(i), E23〉 = ν(p)〈r0(i), p−1E23〉 = χ(p).

Moreover, essentially by definition of j, Ad(k) = diag(j(k, i), 1, j(k, i)). As j(h, i) = j(pk, i) =

j(p, i)j(k, i), one obtains jlin(h, x0) = diag(j(h, i), 1, j(h, i)).
For the second statement, suppose hz ∈ H+

J satisfies hz · i = z. Then

jlin(h, z) = flin(hhz)flin(hz)
−1 = diag(j(hhz, i), 1, j(hhz, i)) diag(j(hz, i), 1, j(hz, i))

−1

= diag(j(h, z), 1, j(h, z)).

The proposition follows. �

2.4. Steinberg generators and relations

In this section, we let k be a local field of characteristic zero and assume that G is a
simply connected simple group over k. In this setting, Deligne’s double cover (2)coincides
with the Steinberg–Matsumoto cover. We thus recall this construction for the purposes of
certain p-adic calculations in later sections.

Suppose that Φ is a simple root system and ∆ a set of simple roots. We let (α, β) denote
the pairing on Φ normalized so that (α, α) = 2 for a long root (when the root system is simply
laced, we assert that all roots are long). Suppose that g is the associated split, simple Lie
algebra over Q and G the associated split, simply-connected group. Steinberg [Ste16] gives
a presentation for the group G(k) in terms of generators and relations. One has generators
xα(u) for all roots α and u ∈ k, subject to the following relations:

(1) xα(u)xα(v) = xα(u+ v).
(2) If α, β are roots with α + β 6= 0, then the commutator

{xα(u), xβ(v)} =
∏

iα+jβ∈Φ,i,j∈Z>0

xiα+jβ(Ciju
ivj)

for integers Ci,j that depend upon the order in the product but are independent of
u, v.

(3) For t ∈ k× set wα(t) = xα(t)x−α(−t−1)xα(t) and hα(t) = wα(t)wα(−1). Then
hα(t)hα(s) = hα(ts).

(4) When Φ is of type A1, then wα(t)xα(u)wα(−t) = x−α(−t−2u).

Following Steinberg [Ste16, Theorem 12] (see also [LS10, Section 2]), a topological
double cover of G(k) can now be defined as follows. Recall the Hilbert symbol (·, ·)2 :
k× × k× → µ2(k). One takes as generators elements xα(u) and {1, ζ} = µ2 satisfying (1),
(2), and (4), along with
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(5) The elements 1, ζ are in the center.
(6) For t ∈ k× set

w̃α(t) = xα(t)x−α(−t−1)xα(t) and h̃α(t) = w̃α(t)w̃α(−1).

Then h̃α(t)h̃α(s) = h̃α(ts)(t, s)
2

(α,α)

2 .

From [LS10, section 3, page 4904], who cite [Mat69, Lemme 5.4], one has

(4) {h̃α(s), h̃β(t)} = (s, t)
(α∨,β∨)
2 ,

where α∨ = 2α
(α,α)

. We let G̃(k) denote the double cover of G(k) here constructed, where the

projection p : G̃(k) −→ G(k) is given by sending generators to the analogous generators in
G(k). As previously noted, this construction recovers Deligne’s cover (2) in the split case.
In particular, if J = R or H3(R), so that G = GJ is the split group of type G2 or F4

respectively, then G̃(R) ∼= G̃J .

2.5. 2-adic subgroups of F4

We now specialize to k = Q2 and G the split group of type F4. We enumerate the 4
simple roots in the usual way, so that the Dynkin diagram

◦ − − − ◦ =>= ◦ − − − ◦
has labels α1 through α4 from left to right. In this section, we define certain compact open

subgroups K∗R(4) and K ′R(4) of F̃4(Q2) that we prove inject into F4(Q2). This first group is
the natural analogue in F4(Q2) of the classical compact open subgroup{(

A B
C D

)
∈ Sp6(Z2) : C ≡ 0 (mod 4), det(A), det(D) ≡ 1 (mod 4)

}
that arises in the theory of Siegel theta functions of half-integral weight; indeed, K∗R(4)

essentially intersects the standard GSp6-Levi subgroup of F̃4(Q2) in this group.
For global purposes, it is better to pass to a certain conjugate of this compact open

subgroup, denoted K ′R(4). While we do not use the subgroup K∗R(4) in the sequel, it is
nevertheless more natural to define and prove properties about (splitting, Iwahori decompo-
sition, etc.). Thus, we consider the case of K∗R(4) first, then pass to the conjugate K ′R(4)
in Section 2.5.3. In Section 4.2.1, we use the group K ′R(4) to construct the quaternionic
modular forms of half-integral weight described in Theorem 1.2.5.1.

Remark 2.5.0.1. We remark that one can also construct quaternionic modular forms of
level K∗R(4). However, it is unclear if their Fourier coefficients are as interesting.

2.5.1. Preliminaries. To begin, we record the following slight extension of [Kar21,
Lemma 3.1].

Lemma 2.5.1.1. Let k be a local field of characteristic zero. Suppose that Φ is a simple
root system and G(k) is the corresponding simply-connected group. For any α ∈ Φ and

s, t ∈ k such that 1 + st 6= 0, in the double cover G̃(k) we have

xα(t)x−α(s) = (1 + st,
t

1 + st
)
− 2

(α,α)

2 x−α

(
s

1 + st

)
h̃α(1 + st)xα

(
t

1 + st

)
.

Proof. This follows from [Ste73, Proposition 2.7]. �
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Corollary 2.5.1.2. With notation as above, now let k = Q2 and let α ∈ Φ and s, t ∈ Q2.

(1) If Φ is doubly laced and α is a short root, then

xα(t)x−α(s) = x−α

(
s

1 + st

)
h̃α(1 + st)xα

(
t

1 + st

)
;

(2) Let Φ be of any type. If val2(s) ≥ 2 and val2(t) ≥ 0, then

xα(t)x−α(s) = x−α

(
s

1 + st

)
h̃α(1 + st)xα

(
t

1 + st

)
;

Proof. The proof of the first claim is immediate from the lemma and our normalization
that (β, β) = 2 for long roots, so that (α, α) = 1 for our short root. The second claim follows
precisely as in the proof of [Kar21, Lemma 3.1] with λ = 0. �

.
We now return to G = F4. The inclusion of rational Lie algebras m0

J → g(J) discussed
in Section 2.2 gives rise to an embedding of algebraic groups SL3 → F4 when J = H3(Q).
In terms of roots, the image corresponds to the subroot system with simple roots {α3, α4}.
When k is a local field, note that this embedding lifts to a splitting s : SL3(k) → F̃4(k).
Indeed, the subgroup SL3(k) of F4(k) is generated by the elements xβ(u) for β lying in
the sub-root system generated by {α3, α4}. We may define this SL3(k) via generators and

relations as in Section 2.4, and the relations defining it continue to be satisfied in F̃4(k) due
to Corollary 2.5.1.2.

Lemma 2.5.1.3. Let SL3 ⊂ F4 be the Q-subgroup just described. For any local field k, the

double cover F̃4(k) splits uniquely over SL3(k).

2.5.2. The case of K∗R(4). Recall that α1, α2, α3, α4 are the simple roots of F4, with
α1, α2 long and α3, α4 short. Let R = MRUR be the standard non-maximal parabolic sub-
group of F4 with simple roots α3, α4 in the Levi MR. The notation R here refers to the
non-maximal parabolic RJ from Section 2.3 as these two parabolic subgroups agree when
G = GJ is of type F4. Set

Φ+
MR

= {α3, α4, α3 + α4},
set Φ−MR

= −Φ+
MR

and ΦMR
= Φ+

MR
∪ Φ−MR

. Let Φ+
UR

= Φ+ \ Φ+
MR

, so that Φ+
UR

contains the
roots in the unipotent radical UR of R.

Set K∗MR
(4) to be the subgroup M̃R(Q2) generated by h̃αi(1+4Z2) for i = 1, 2 and xβ(Z2)

for β ∈ ΦMR
. Let U+

R (Z2) be the subgroup of F̃4(Q2) generated by xβ(Z2) for all β ∈ Φ+
UR

,

and let U−R (4Z2) be the subgroup of F̃4(Q2) generated by x−β(4Z2) for all β ∈ Φ+
UR

. Finally,

let K∗R(4) be the subgroup of F̃4(Q2) generated by U−R (4Z2), K∗MR
(4) and U+

R (Z2). We have
the following theorem.

Theorem 2.5.2.1. Let the notation be as above.

(1) One has K∗R(4) = U−R (4Z2)K∗MR
(4)U+

R (Z2).
(2) The map K∗R(4)→ F4(Q2) is injective.

We will prove this theorem below. While the statement is natural, the proof is technical
due to the lack of uniqueness of sections over various tori in F4(Q2). As a result, we cannot
simply rely on the Iwahori factorization of the image of K∗R(4).

It is easy to deduce the following corollary of Theorem 2.5.2.1.
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Corollary 2.5.2.2. The group K∗R(4) has an Iwahori decomposition with respect to any
standard parabolic subgroup containing R.

Recall the subgroup SL3 ⊂ F4 from the previous subsection. The subgroup s(SL3(k)) of

F̃4(k) is that which is generated by the elements xβ(u) for β ∈ ΦMR
. Using Lemma 2.5.1.3,

we now observe:

Lemma 2.5.2.3. The map K∗MR
(4)→ F4(Q2) is injective.

Proof. If g ∈ K∗MR
(4), it is easy to see that one can express g as a product g = t1t2s(g

′)
with tj ∈ hαj(1+4Z2) and g′ ∈ SL3(Q2). Consequently, if g 7→ 1 in F4(Q2), then t1 = t2 = 1
and g′ = 1, proving that g = 1. �

We will prove part (1) of Theorem 2.5.2.1 in Paragraph 2.5.2.1. Let us observe now
that part (1) implies part (2). Indeed, suppose g = n1mn2 is in K∗R(4) with n1 ∈ U−R (4Z2),
m ∈ K∗MR

(4) and n2 ∈ U+
R (Z2). If g 7→ 1 in F4(Q2), then we see easily that n1 = 1 and

n2 = 1. Thus m 7→ 1, hence m = 1 by Lemma 2.5.2.3.
2.5.2.1. Iwahori decomposition. For a non-negative integer m, let U+

R (2mZ2) be the sub-

group of F̃4(Q2) generated by xβ(2mZ2) for all β ∈ Φ+
UR

, and let U−R (2mZ2) be the subgroup

of F̃4(Q2) generated by x−β(2mZ2) for all β ∈ Φ+
UR

.
We begin with the following lemma. Let UB be the unipotent radical of the standard

Borel of F̃4(Q2).

Lemma 2.5.2.4. Recall that ∆ = {α1, α2, α3, α4} are the simple roots.

(1) The unipotent group UB(Q2) is generated by the xαi(Q2);
(2) Let Us be the subgroup of UB(Q2) generated by the xαi(Z2). Then Us contains

U+
R (2A) for some A� 0.

Proof. The first part of the lemma is standard. For the second part, suppose α ∈ Φ+
UR

.
By the first part, there exists a finite word u in elements of the form xαi(ri) with ri ∈ Q2,
so that u = xα(1). Let T++ denote the subgroup of t ∈ T with |αi(t)| < 1 for all i.
Conjugating by a sufficiently deep t ∈ T++, one finds that there exists a nonzero rα ∈ Z2

so that xα(rα) ∈ Us. Now, for t ∈ Z×2 , consider the commutator {hα(t), xα(rα)}. On the
one hand, because t ∈ Z×2 , this commutator is in Us. On the other hand, this commutator
is xα((t2 − 1)rα). As t varies in Z×2 , t2 − 1 fills out 8Z2. Thus there is Nα � 0 so that
xα(2NαZ2) ⊆ Us. The lemma follows. �

Let U be the set of products of the form U−R (4Z2)K∗MR
(4)U+

R (Z2). Let K∗R(4, 2m) be

the subgroup of F̃4(Q2) generated by U−R (4Z2), K∗MR
(4) and U+

R (2mZ2), so that K∗R(4) =
K∗R(4, 1). In order to prove Theorem 2.5.2.1, we need to check that K∗R(4) · U = U . We
will do this by proving K∗R(4, 2A) · U = U for A � 0, then inducting down on A to obtain
K∗R(4, 1) · U = U .

We start with the following lemma.

Lemma 2.5.2.5. One has U−R (4Z2) · U = U , and K∗MR
(4) · U = U .

Proof. That U−R (4Z2)U = U is trivial. For the multiplication by K∗MR
(4), one uses that

if β ∈ Φ−UR , α ∈ ΦMR
, and a, b are positive integers, then if γ = aα + bβ is a root, then

γ ∈ Φ−UR . The lemma then follows easily by applying the commutator formula. �

Now we have:
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Proposition 2.5.2.6. There is A� 0 such that U+
R (2A) · U ⊆ U .

Proof. By Lemma 2.5.2.4, it suffices to show that xαi(Z2)U ⊆ U for all simple roots
αi. By Lemma 2.5.2.5, we must only check this for i = 1, 2.

Thus suppose that αi is a simple root, i = 1, 2, and α ∈ Φ+
UR

. Note that if a, b are positive
integers, and α 6= αi, then if γ = aαi − bα is a root, then γ ∈ Φ−. Indeed, aαi = γ + bα,
so that if γ were positive, we would have that both γ and α are proportional to αi, a
contradiction. It follows that, for such αi and α and u ∈ Z2, u′ ∈ 4Z2, the commutator

{xαi(u), x−α(u′)} ∈ U−B (4Z2). Here U−B (4Z2) is the subgroup of F̃4(Q2) generated by xβ(4Z2)
for β a negative root.

Let us also note that xαi(u)x−αi(u
′) = x−αi(u

′/(1 + uu′))h̃αi(1 + uu′)xαi(u/(1 + uu′)).
Combining these two facts, we obtain the following: If g = n1mn2 is in U , then xαi(u)g =
n′1xαi(u)m′n2 with n′1 ∈ U−B (4Z2) and m′ ∈ K∗MR

(4).

Now, one verifies easily that if m′ ∈ K∗MR
(4) and u ∈ U+

R (Z2), then (m′)−1um′ ∈ U+
R (Z2).

Consequently, xαi(u)g = n′1m
′n′2 is in U−B (4Z2) · U . The proposition follows from Lemma

2.5.2.5. �

It follows from Proposition 2.5.2.6 and Lemma 2.5.2.5 that K∗R(4, 2A) ·U ⊆ U for A� 0.
As mentioned, we will now induct downward on A to obtain K∗R(4) · U = U .

We require the following lemma.

Lemma 2.5.2.7. Let the notation be as usual.

(1) The sets h̃αi(1 + 4Z2) are subgroups, and they commute with each other.
(2) Suppose t ∈ 1 + 4Z2 and β ∈ Φ. Then there are t1, . . . , t4 ∈ 1 + 4Z2 so that

h̃β(t) =
∏4

i=1 h̃αi(ti).

Proof. The first part of the lemma follows from the usual multiplication formulas,
together with the fact that the Hilbert symbol is trivial when restricted to 1 + 4Z2. For the
second part of the lemma, we mimic the proof of [Ste16, Lemma 38 (b)]. Thus suppose
β = wαi with αi a simple root. Write w = wαw

′ where length(w′) = length(w) − 1. Set

γ = wαβ so that β = wαγ. Now [Ste16, Lemma 37 (c)] yields that w̃α(1)h̃γ(t)w̃α(−1) =

h̃wαγ(t)(c, t) for some c = ±1. However, because t ∈ 1 + 4Z2 and c = ±1, (c, t) = 1. Thus

h̃β(t) = w̃α(1)h̃γ(t)w̃α(−1), from which we obtain

h̃β(t) = h̃γ(t)(h̃γ(t)
−1w̃α(1)h̃γ(t))w̃α(−1) = h̃γ(t)w̃α(t−〈α,γ〉)w̃α(−1),

using [Ste16, Lemma 37 (e)] for the second equality. But this is h̃γ(t)h̃α(t−〈α,γ〉). The lemma
follows by induction on the length of w. �

Proposition 2.5.2.8. For every non-negative integer m, one has K∗(4, 2m) · U ⊆ U .

Proof. As just noted, Proposition 2.5.2.6 implies K∗R(4, 2A) ·U ⊆ U for A� 0. We will
induct downward on N to obtain the proposition.

Thus suppose that we have proved K∗R(4, 2m+1) · U ⊆ U for a non-negative integer m.
We wish to verify that K∗R(4, 2m) · U ⊆ U . To do this, it suffices to check that U+

R (2mZ2) ·
U ⊆ U . Thus suppose u = xα(2ms) ∈ U+

R (2mZ2) and x = n1mn2 ∈ U . We have ux =
(un1u

−1)m(m−1um)n2. It is easy to see that (m−1um)n2 ∈ U+
R (Z2). We claim that un1u

−1 ∈
K∗R(4, 2m+1). Granted this claim, the proposition follows.
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To prove the claim, suppose n1 = v1 · · · vr with each vi of the form x−βi(4si) with si ∈ Z2

and βi ∈ Φ+
UR

. The commutator formula gives uvju
−1 = k′ with k′ ∈ K∗R(4, 2m+1). Indeed, if

α 6= βi this follows from the commutator formula. If α = βi this follows from the formula

xα(t)x−α(s) = x−α(s/(1 + ts))h̃α(1 + st)xα(t/(1 + st))

which implies

xα(t)x−α(s)xα(−t) = x−α(s/(1 + ts))h̃α(1 + st)xα(−st2/(1 + st)). �

2.5.3. The case of K ′R(4). We now define a new subgroup, K ′R(4) ⊆ F̃4(Q2), by con-
jugating K∗R(4) by a certain element of HJ(Q2). This has the effect of changing which root
groups are generated by entries in Z2 or 4Z2. We verify that this conjugate has an appropri-
ate Iwahori factorizations; that it maps injectively to the linear group F4(Q2) is immediate.

Our motivation is that this new group gives a useful compact open subgroup of F̃4(Q2) for
global constructions.

We need to introduce a bit more notation. Recall that PS = HJ ∩ R is the Siegel
parabolic subgroup of HJ ; it has Levi decomposition PS = MRNS. We set Q = LUQ
denote the standard maximal parabolic of F4 associated to the simple root α2. Recalling
the notation in Section 2.3, this is the parabolic QJ of GJ = F4 when J = H3(Qp). Let
w0 ∈ HJ(Z) ⊂ HJ(Z2) be a representative of the unique minimal-length Weyl group element
for HJ which normalizes the MR and conjugates the Siegel parabolic PS to its opposite.

Let Φ+
N be the set of roots in the unipotent radical N of the Heisenberg parabolic P .

Let Φ+
NS

be the set of roots in the unipotent group NS. These are the roots
∑

imiαi with

m1 = 0 and m2 = 1. Note that Φ+
UR

= Φ+
N t Φ+

NS
= {α1} t Φ+

UQ
.

We let N+
S (2mZ2) be the subgroup of F̃4(Q2) generated by xα(2mZ2) for all α ∈ Φ+

NS

and let N+(2mZ2) be the subgroup F̃4(Q2) generated by xα(2mZ2) for all α ∈ Φ+
N . Similarly

define N−(2mZ2) and N−S (2mZ2)
Set U+

R (4, 1) to be the subgroup generated by N+
S (4Z2) and N+(Z2). Let U−R (1, 4) de-

note the subgroup generated by N−S (Z2) and N−(4Z2). Finally, we define K ′R(4) to be the
subgroup generated by U−R (1, 4), K∗MR

(4), and U+
R (4, 1).

The goal of this section is to prove the following theorem.

Theorem 2.5.3.1. Let the notation be as above.

(1) One has K ′R(4) = U−R (1, 4) ·K∗MR
(4) · U+

R (4, 1).
(2) The map K ′R(4)→ F4(Q2) is injective.

Proof. We first show that K ′R(4) = w0K
∗
Rw
−1
0 by showing that w0 sends the generators

of K∗R(4) to those of K ′R(4). This is a straightforward calculation on the level of roots groups
in F4(Q2), so we need only ensure the claim with our choice of lifts in the cover. Note is
that the conjugation action depends only on the element in F4(Q2) and not a choice of lift.

Recall that K∗R(4) is generated by U−R (4Z2) = N−(4Z2)N−S (4Z2), K∗MR
(4), and U+

R (Z2) =

N+(Z2)N+
S (Z2). Since the cover splits canonically over unipotent subgroups, the action of

w0 on the unipotent generators is uniquely determined by the corresponding conjugation in
F4(Q2), where one readily verifies that

w0N
−
S (4Z2)w−1

0 = N+
S (4Z2), w0N

−(4Z2)w−1
0 = N−(4Z2),

and similarly for the factors of U+
R . Also, w0 permutes the root groups xβ(Z2) for β ∈ ΦMR

.

Thus we need only consider the torus generators h̃αi(1 + 4Z2) with i = 3, 4 of K∗MR
(4).
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Suppose that w0 = s1s2 · · · s6 be a minimal word decomposition of the associated Weyl

group element in terms of simple root reflections. For any root α, let h̃α(t) be the distin-
guished lift of the corresponding coroot hα(t). Then [Gao17, 2.1 (3)] tells us that for any
simple reflection sβ,

sβh̃α(t)s−1
β = h̃α(t)h̃β(t−〈α̌,β〉).

In particular, this implies that for any t ∈ 1 + 4Z2, w0h̃α(t)w−1
0 is a product of (com-

muting) elements of the form h̃β(s), where s is a power of t and β ranges over the simple
roots appearing in the word decomposition. In particular, for each i = 3, 4, we see that

w0h̃αi(t)w
−1
0 ∈ K∗MR

(4), showing that w0K
∗
MR

(4)w−1
0 = K∗MR

(4).
On the other hand, we may also compute this conjugation in the group HJ(Q2) ∼=

GSp6(Q2), where it is easy to see that for both i = 3, 4, w0h̃αi(t)w
−1
0 projects to hαi(t

−1).

This forces w0h̃αi(t)w
−1
0 = ε(t)h̃αi(t

−1) for some central sign character ε : 1+4Z2 −→ µ2(Q2).

Since w0h̃αi(t)w
−1
0 ∈ K∗MR

(4), Theorem 2.5.2.1 forces w0h̃αi(t)w
−1
0 = h̃α(t−1).

Thus K ′R(4) = w0K
∗
Rw
−1
0 . Theorem 2.5.3.1 (2) immediately follows from the correspond-

ing statement in Theorem 2.5.2.1.
For the Iwahori decomposition, let g′ ∈ K ′R(4) be arbitrary and set g = w−1

0 g′w0 ∈ K∗R(4).
Recall that PJ = HJNJ is the Heisenberg parabolic subgroup. Set K∗J(4) := K∗R(4)∩HJ(Q2).
Then Corollary 2.5.2.2 implies that g ∈ K∗R(4) can be written uniquely as g = nmu, with
n ∈ N−J (4Z2), u ∈ NJ(Z2), and m ∈ K∗J(4). Note that a simple corollary of the uniqueness
in Theorem 2.5.2.1 is that K∗J(4) possesses the Iwahori decomposition

(5) K∗J(4) = N−S (4Z2)K∗MR
(4)N+

S (Z2).

Conjugating by w0,

(6) w0gw
−1
0 = (w0nw

−1
0 )(w0mw

−1
0 )(w0uw

−1
0 ),

where now w0uw
−1
0 ∈ N−J (4Z2) and w0uw

−1
0 ∈ NJ(Z2). Using the group structure and Iwa-

hori decomposition 5, we may write m−1 = u−1
1 m−1

1 n−1
1 where n1 ∈ NS(Z2), u1 ∈ N−S (4Z2)

and m1 ∈ K∗MR
(4). Inverting, we get

m = n1m1u1 ∈ NS(Z2)K∗MR
(4)N−S (4Z2).

We can now conjugate by w0 to get

w0mw
−1
0 = (w0n1w

−1
0 )(w0m1w

−1
0 )(w0u1w

−1
0 ),

with w0u1w
−1
0 ∈ NS(4Z2), w0n1w

−1
0 ∈ N−S (Z2), and w0m1w

−1
0 ∈ K∗MR

(4) since w0K
∗
MR

(4)w−1
0 =

K∗MR
(4).

Combining this with the decomposition (6), we obtain a unique expression

g′ = w0gw
−1
0 = n′m′u′

where n′ = w0nn1w
−1
0 ∈ U−(1, 4), u′ = w0u1uw

−1
0 ∈ U+(4, 1), and m′ = w0m1w

−1
0 ∈

K∗MR
(4). �

We now state a corollary of Theorem 2.5.3.1 that we will need. Denote by Φ+
1,1 the roots∑

imiαi with both m1,m2 > 0. Then Φ+
N is a disjoint union of {α1} and Φ+

1,1. Set U+
1,1(Z2)

the subgroup generated by xα(Z2) for all α ∈ Φ+
1,1. Define U−1,1(4Z2) similarly.

Corollary 2.5.3.2. The group K ′R(4) has an Iwahori factorization with respect to Q.
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Proof. Suppose g ∈ K ′R(4). By Theorem 2.5.3.1, we have g = n1kn2 with n1 ∈ U−R (1, 4),
k ∈ K∗MR

(4) and n2 ∈ U+
R (4, 1). Conjugating all terms of the form x−α1(4u) in n1 to the

right, one can write n1 = n′1n
′′
1, where n′1 in the group generated by N−S (Z2) and U−1,1(4Z2)

and n′′1 ∈ x−α1(4Z2). Similarly, one can write n2 = n′′2n
′
2, with n′2 in the group generated by

N+
S (4Z2) and U+

1,1(Z2) and n′′2 ∈ xα1(Z2). This gives g = n′1(n′′1kn
′′
2)n′2, which is the desired

Iwahori factorization. �

2.6. Integral models

In the previous sections, we have defined integral models of the algebraic groups G2

and F4 using the Chevalley–Steinberg generators and relations at each finite place. To do
computations in the later sections, and to coherently relate these integral models to lattices

in G̃J(R), we will need a somewhat explicit understanding of these integral models. In this
section, we give such explicit integral models for the groups G2 and F4. Via the work of
Steinberg, this amounts to giving a Chevalley basis of the corresponding Lie algebras, which
is what we do.

2.6.1. Type G2. We define g2,Z := M3(Z)tr=0 ⊕ V3(Z)⊕ V ∨3 (Z). A Chevalley basis can
be given by Xα being: Eij in M3(Z)tr=0, v1, v2, v3 in V3(Z), and −δ1,−δ2,−δ3 in V ∨3 (Z).
Here v1, v2, v3 is the standard basis of V3 and δ1, δ2, δ3 is its dual basis.

2.6.2. Type F4. First we set J0 = H3(Z) to be the symmetric 3 × 3 matrices with
integer coefficients. Let mJ(Z) be the elements of mJ that take J0 to itself.

We set

f4,Z := (M3(Z)⊕mJ(Z))2 tr=µ/Z(13, 21J0)⊕ V3(Z)⊗ J0 ⊕ V3(Z)∨ ⊗ J0,

where the notation is as follows. Here µ : mJ → Q is the map satisfying

(φX1, X2, X3) + (X1, φX2, X3) + (X1, X2, φX3) = µ(φ)(X1, X2, X3).

A pair (φ1, φ2) ∈ M3(Z)⊕mJ(Z) is in (M3(Z)⊕mJ(Z))2 tr=µ if 2 tr(φ1) = µ(φ2). Note that
the pair (13, 21J0) is in (M3(Z)⊕mJ(Z))2 tr=µ and we quotient out by the integer multiples
of this pair.

We identify the quotient (M3(Z)⊕mJ(Z))2 tr=µ/Z(13, 21J0) with a subset of sl3⊕m0
J via

(φ1, φ2) 7→ φ1 + φ2 − tr(φ1)1 :=

(
φ1 −

tr(φ1)

3
13

)
+

(
φ2 −

µ(φ2)

3
1J0

)
∈ sl3 + m0

J .

It is easy to see that this element acts on V3(Z)⊗J0 and V3(Z)∨⊗J0 preserving these integral
structures.

One has the following proposition.

Proposition 2.6.2.1. The lattice f4,Z is closed under the bracket.

Now, we observe that because J0 = H3(Z), mJ = M3(Q) with X ∈ M3(Z) acting on
Y ∈ H3(Q) as XY + Y X t. Moreover, one can check by easy explicit calculation, M3(Z) =
{X ∈ mJ(Z) : µ(X) ∈ 2Z}.

Consequently, we have

f4,Z = (M3(Z) +M3(Z))tr1=tr2/Z(1,1) + V3(Z)⊗ J0 + V3(Z)∨ ⊗ J0.
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For the Chevalley basis, we take the usual bases of Xα = Eij of the two copies of M3(Z).
Now J0 is the Z-span of

{e11, e22, e33, x1 = e23 + e32, x2 = e31 + e13, x3 = e12 + e21},
where eij denotes the element of M3(Z) with a 1 in the (i, j) location and zeros elsewhere.
For the rest of the Chevalley basis, we take the elements vj ⊗ xk, vj ⊗ ekk,−δj ⊗ xk and
−δj ⊗ ekk.

2.7. Splittings

We may now combine our local results to construct splittings of certain congruence
subgroups of G2(R) and F4(R) into the double cover.

Recall that when p > 2 is odd, we have the hyperspecial maximal compact subgroup
Kp = G(Zp) of G(Qp) induced by our integral model.

Lemma 2.7.0.1. [LS10, Proposition 2.1] The central extension G̃(Qp) splits over Kp.

The splitting homomorphism sp : Kp −→ G̃(Qp) is unique, and we denote its image by K∗p .

We now define a congruence subgroup ΓF4(4) ⊆ F4(R) and explain that this subgroup

splits into F̃4(R). Let KR(4) be the image in F4(Q2) of the subgroup K ′R(4), and let s2 :

KR(4)→ F̃4(Q2) be the induced splitting. Define now

(7) ΓF4(4) := F4(Q) ∩KR(4)
∏
p>2

Kp ⊂ F4(Z).

To construct a splitting of ΓF4(4) into F̃4, we will use the following lemma.

Lemma 2.7.0.2. Suppose A,B are two groups containing a central µ2, and Γ ⊆ A/µ2, B/µ2.
Let s : Γ → (A × B)/µ∆

2 , and sA : Γ → A be given splittings. Then there exists a unique
splitting sB : Γ→ B so that s(γ) = (sA(γ), sB(γ))µ∆

2 for all γ ∈ Γ.

Proof. By assumption, for each γ ∈ Γ one has s(γ) = ±(sA(γ), sB(γ)) for a unique
sB(γ) ∈ B. This uniquely determines the map sB : Γ→ B, and one checks that it is a group
homomorphism. �

Using the inclusion ΓF4(4) ⊂ F4(Q) ⊂ F4(R), we obtain a splitting sΓ : ΓF4(4)→ F̃4(R)

by applying Lemma 2.7.0.2 with Γ = ΓF4(4), A = F̃4(Af ), and B = F̃4(R). Let sf :

ΓF4(4)→ F̃4(Af ) be the section induced from the local sections sp from Lemma 2.7.0.1 and
Theorem 2.5.2.1. With this notation, we have obtained

Proposition 2.7.0.3. There is a unique splitting sΓ : ΓF4(4) → F̃4(R) characterized by
the fact that sQ(γ) = ±(sf (γ), sΓ(γ)) for all γ ∈ ΓF4(4).

Below we will need the following proposition.

Proposition 2.7.0.4. For all integers u, the splitting sΓ satisfies sΓ(xα(u)) = xα(u) for
all α ∈ Φ+

N ∪ Φ−NS ∪ ΦMR
and sΓ(xα(4u)) = xα(4u) for all α ∈ Φ+

NS
∪ Φ−N .

Proof. Indeed, this compatibility occurs for sQ and sp for all p = 2, 3, . . .. The propo-
sition thus follows from the definition of sΓ. �

In the next section, we recall the inclusion of algebraic Q-groups G2 ⊆ F4 and prove

an inclusion G̃2(R) ⊆ F̃4(R). Assuming these inclusions for the moment, we set ΓG2(4) =

G2(R) ∩ ΓF4(4) and obtain a splitting ΓG2(4)→ G̃2(R).
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2.8. Group embeddings

We conclude this chapter with some remarks about the inclusion of G2 in F4.

2.8.1. Algebraic groups over Q. We recall the following proposition from the theory
of algebraic groups; see [Mil17, Theorem 25.4(c)].

Proposition 2.8.1.1. Suppose k is a field of characteristic 0, H,G are algebraic groups
over k, with H semisimple, connected and simply connected. Suppose L : h → g is an
embedding of Lie algebras. Then there exists a unique map H → G of algebraic groups
whose differential is L.

We first work with algebraic groups over Q. Either from the proposition or directly, one
can see easily that there is a map SL3 → F4, lifting the Lie algebra embedding m0

J → f4 in
the notation of [Pol20]. Let SO(3) denote the group of g ∈ SL3 with gtg = 1. Composing
with the map SO(3)→ SL3, we get an embedding of SO(3) into F4.

Lemma 2.8.1.2. The centralizer of SO(3) in F4 is a split form of type G2.

Proof. Denote by G′ the identity component of the centralizer of SO(3) in F4. We first

observe that on the level of Lie algebras, we have g2 → f4, and this g2 is exactly f
SO(3)
4 .

Consequently, the action of G′ on f4 induces an action of G′ on g2, so we obtain a map
α : G′ → G2, because G2 is defined as the group of automorphisms of its Lie algebra.

In the reverse direction, Proposition 2.8.1.1 implies the existence of a map β : G2 →
F4 lifting the inclusion of Lie algebras g2 → f4. The image of this G2 centralizes SO(3)
by uniqueness of the lift: if g ∈ SO(3) then gβ(h)g−1 is another lift, so is equal to β.
Consequently, β gives a map G2 → G′. The map α ◦ β : G2 → G2 induces the identity on
Lie algebras by construction, so is the identity. Similarly, the map β ◦ α : G′ → G′ induces
the identity of Lie algebras, so is the identity.

Finally, we show CF4(SO(3)) is connected. The conjugation action of any element τ ∈
CF4(SO(3))(Q) on G2 must be inner, since Out(G2) is trivial. In particular, if CF4(SO(3))
is not connected, there must exist a finite-order element τ /∈ G2(Q) centralizing both SO(3)
and G2. But this would imply that the Lie subalgebra so(3) ⊕ g2 ⊂ f4 is not maximal, a
contradiction. �

2.8.2. Real Lie groups. We now work with real Lie groups. We will explain the fact

that the centralizer of SO(3) in F̃4 is the group G̃2; see also [HPS96].
First consider the case of the linear group F4.

Lemma 2.8.2.1. The centralizer of SO(3) in F4(R) is G2(R).

Proof. As in the proof of Lemma 2.8.1.2, the identity component CF4(R)(SO(3))0 maps

to the connected Lie group G2(R). Moreover, this group has Lie algebra exactly f
SO(3)
4 = g2

(it is easy to see that the Lie algebra is contained in this set, and it is surjective by considering
the exponential map). It thus remains to determine which Lie group of type G2 this is.

Because we already know G2 → F4 as real algebraic groups, we obtain G2(R) →
CF4(R)(SO(3)). Because the connected double cover of G2(R) does not split over G2(R),
the identity component of the centralizer of SO(3) must be the linear group G2(R). Finally,
since F4(R) and G2(R) are R-split, an argument mirroring the one in the algebraic setting
shows that CF4(R)(SO(3)) is connected. �
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Now, for the case of covering groups. First observe that SO(3) ⊆ SL3(R) ⊆ R+
J , so the

SO(3) splits into F̃4(R) by Lemma 2.5.1.3; the splitting is unique because SO(3) is equal to
its derived group.

Lemma 2.8.2.2. The identity component of the centralizer CF̃4(R)(SO(3))0 of SO(3) in

F̃4(R) is identified with G̃2(R).

Proof. Let G′ be the identity component of the centralizer of this SO(3) in F̃4(R).
Then G′ consists of elements (g, j1/2(g)) where j1/2(g) : XF4 → GL2(C) is a continuous map
whose symmetric square is jlin(g) : XF4 → GL3(C). Every element g ∈ F4(R) occurring in
such a pair commutes with SO(3), so that g ∈ G2(R). We thus obtain a map G′ → G2(R).
An argument with the exponential map and Lie algebras proves that this map is surjective,
because G2(R) is generated by the image of the exponential map.

We now construct a map G′ → G̃2(R). We claim that G2(R)/KG2 = XG2 embeds into
F4(R)/KF4 = XF4 ; this follows from the claim that the maximal compact subgroups KG2

and KF4 satisfy KG2 = G2(R) ∩ KF4 . Granting this for a moment, if (g, j1/2(g)) is in G′,

restricting j1/2(g) to XG2 gives an element of G̃2(R). We therefore obtain G′ → G̃2(R),
which covers the identity map on G2(R). Because G′ is a connected Lie group with Lie

algebra g2, and G2(R) doesn’t split into G̃2(R), the map G′ → G̃2 is an isomorphism.
To see that KG2 = G2(R) ∩ KF4 , first recall that KG2 and KF4 are the subgroups of

G2(R), respectively F4(R), that also preserve the bilinear form Bθ(X, Y ) := −B(X, θY )
on g2, respectively, f4, where θ is the Cartan involution on these Lie algebras. Because the
Cartan involution θ on f4 described in [Pol20] restricts to the one on g2, it is clear that
G2(R) ∩ KF4 is contained in KG2 . For the reverse inclusion, one notes that KG2 can be

generated by the exponentials of elements of f
SO(3),θ=1
4 ⊆ fθ=1

4 , which are in KF4 . �

Remark 2.8.2.3. The fact that the Cartan involution on f4 restricts to the one on g2

plays a useful role in verifying that the pullback of a modular form on F̃4(R) to G̃2(R)
remains a modular form.

2.8.3. Covering groups. We now explain the map G̃2(Qv)→ F̃4(Qv). By 2.8.1.1, we
have an embedding of linear algebraic groups ιlin : G2 → F4.

Lemma 2.8.3.1. Using the integral structures induced from section 2.6, for every prime
p one has ιlin(G2(Zp)) ⊆ F4(Zp).

Proof. The Lie algebra constructions of section 2.6 define the adjoint forms of groups
of type G2 and F4. Because these groups are also simple, simply connected, and have rank
at least 2, the hyperspecial maximal compact subgroups of each are generated by the xα(Zp)
for α a root of G2, respectively, F4. But under the map g2 → f4, the long root spaces of G2

map to long roots of F4, and the short roots of G2 map to a sum of 3 commuting short roots
of F4. The lemma follows. �

Proposition 2.8.3.2. For every place v of Q, there is an injection ιv : G̃2(Qv) →
F̃4(Qv). The maps ιv glue together to give an injection ι : G̃2(A)→ F̃4(A), that is compatible
with the splittings on rational points.

Proof. Let G̃′′2(Qv) be the inverse image in F̃4(Qv) of ιlin(G2(Qv)) ⊆ F4(Qv). Let
G′2(Qv) be the universal central extension of G2(Qv), as constructed in [Ste16, section 6].
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Then G′2(Qv) is a central extension of G2(Qv) by the Milnor K-group K2(Qv); see [Ste16,

section 7, Theorem 12]. On the one hand, by our definition of G̃2(Qv) in terms of generators

and relations, G̃2(Qv) is the pushout of G′2(Qv) along the Hilbert symbol of K2(Qv). On the
other hand, because G′2(Qv) is universal, there is a unique map K2(Qv)→ µ2(Qv) for which

G̃′′2(Qv) is obtained by G′2(Qv) via pushout. But as is well-known, K2(Qv)/2K2(Qv) '
µ2(Qv), so the only nontrivial map is given by the Hilbert symbol. Note now that the

extension of G2(Qv) defined by G̃′′2(Qv) is not split, as it is already not split over the SL3 ⊆
G2 ⊆ F4 generated by the long roots of G2. Consequently, the map G′2(Qv) → G̃′′2(Qv)

factors through G̃2(Qv). The induced map G̃2(Qv) → G̃′′2(Qv) is clearly an isomorphism.
This constructs the ιv in the statement of the proposition.

Taking all the ιv together, we obtain an injection ι : G̃2(A)→ F̃4(A). By Lemma 2.8.3.1,
the map is well-defined, i.e., respects the restricted product nature of these groups. Note
that here we are using the uniqueness of the splitting in Lemma 2.7.0.1.

Finally, we obtain two potentially distinct splittings of G2(Q) into F̃4(A): One via

ι(G2(Q)) ⊆ ι(G̃2(A)) and the other via ιlin(G2(Q)) ⊆ F4(Q) ⊆ F̃4(A). But every map
G2(Q)→ µ2(Q) is trivial, so these splittings coincide. �
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CHAPTER 3

Modular forms

In this chapter, we define quaternionic modular forms of half-integral weight, general-
izing the integral weight theory of [Pol20] and prove the main results about their Fourier
expansions and Fourier coefficients. We then assert the existence of a certain modular form

ΘF4 of weight 1
2

on F̃4(A), the proof of which we defer to Chapter 4. Finally, we consider

the pull back of ΘF4 to G̃2(A), proving Theorems 1.2.3.1 and 1.2.5.1 of the introduction.
Along the way, we also do arithmetic invariant theory related to cubic rings and their inverse
differents.

3.1. Quaternionic modular forms

We begin by studying quaternionic modular forms of half-integral weight. Suppose ` ≥ 1
is an odd integer and recall that V`/2 := Sym`(V2). We consider V`/2 as a representation of

K̃J via the map j1/2(·, x0) : K̃J → GL2(V2). A modular form on GJ of weight `/2 will be a
certain V`/2-valued automorphic function.

To define the appropriate sorts of functions on G̃J that we will be considering, we require
a certain differential operator. Let g(J) ⊗ C = k ⊕ p be the Cartan decomposition of the

Lie algebra g(J)⊗C, which we identify with the complexified Lie algebra of G̃J . In [Pol20,
section 5], an identification is given between p and V2⊗WJ over C. Let {Xα} be a basis of p
and {X∨α} the dual basis of the dual space p∨. Suppose now that ϕ is a smooth V`/2-valued

function on G̃J satisfying ϕ(gk) = k−1 ·ϕ(g) for all g ∈ G̃J and k ∈ K̃J . For such a function,
we define D′`/2ϕ(g) =

∑
αXαϕ(g)⊗X∨α , which is valued in

V`/2 ⊗ p∨ ' Sym`−1(V2)⊗WJ ⊕ Sym`+1(V2)⊗WJ .

Let pr : V`/2 ⊗ p∨ → Sym`−1(V2) ⊗ WJ be the K̃J -equivariant projection and define the
operator D`/2 = pr ◦D′`/2.

Suppose that GJ is a reductive group over Q such that GJ(R) is an adjoint quaternionic
exceptional group. Following our conventions from Section 2.1, we further assume we are

given a metaplectic double cover G̃J(A) of GJ(A) coming from the appropriate Brylinski–
Deligne extension. We thus have a short exact sequence of locally-compact topological
groups

1 −→ µ2(Q) −→ G̃J(A) −→ GJ(A) −→ 1,

which splits canonically over GJ(Q); let sQ denote this splitting. There is a decomposition

G̃J(A) =
∏

p G̃J(Qp)/µ
+
2 . Our convention implies that G̃J(R) ∼= G̃J .

Then for all but finitely many odd primes p, GJ is unramified and contains a hyperspecial

subgroup Kp := GJ(Zp) over which the cover G̃J(Qp)→ GJ(Qp) splits [Wei18, Section 7].
Let T be a finite number of primes containing 2 such that for p /∈ T , the above statement
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holds. Let KT ⊂ GJ(AT ) :=
∏

p∈T GJ(Qp) be a given compact subgroup equipped with a
splitting

G̃J(AT )

KT GJ(AT ),

sT

where G̃J(AT ) :=
∏

p∈T G̃J(Qp)/µ
+
2 .

Setting KT := KT
∏

p/∈T Kp, we have a splitting sT : KT → G̃J(Af ); let K∗T denote its
image.

Definition 3.1.0.1. Suppose ` ≥ 1 is an odd integer. An adelic quaternionic modular

form on G̃J(A) of weight `/2 and level (KT , sT ) is a smooth function

ϕ : GJ(Q)\G̃J(A)→ V`/2

of moderate growth satisfying

(1) ϕ(gk∞) = k−1
∞ · ϕ(g) for all g ∈ G̃J(A) and k ∈ K̃∞,

(2) ϕ(gk) = ϕ(g) for all g ∈ G̃J(A) and k ∈ K∗T ,
(3) D`/2ϕ ≡ 0.

Our first main result will be to show that such a definition of quaterionic modular form
of half-integral weight has a robust theory of Fourier coefficients, generalizing the integral
weight theory of [Pol20] and its antecedents.

3.2. Generalized Whittaker functions

We now investigate the so-called generalized Whittaker functions associated to quater-
nionic modular forms. In other words, we reproduce the main result of [Pol20] except now
in the half-integral weight case. Because almost all of the proof in [Pol20] carries over, we
are quite brief.

We begin with the following crucial proposition. Recall that an ω = (a, b, c, d) ∈ WJ(R)
is said to be positive semi-definite if the function pω(Z) = aN(Z) + (b, Z#) + (c, Z) + d is
never 0 on the upper-half space HJ = {X + iY : X, Y ∈ J, Y > 0}.

Proposition 3.2.0.1. Consider the function g 7→ 〈ω, gr0(i)〉 on HJ(R)+, and suppose ω

is positive semi-definite. Then there exists a smooth genuine function αω(g) : H̃J(R)+ → C
satisfying αω(g)2 = 〈ω, gr0(i)〉.

Proof. Recall from [Pol20] that 〈ω, gr0(i)〉 = −j(g, i)pω(g · i). Because HJ is con-
tractible and pω(Z) is never 0 on HJ , pω(Z) has a smooth square root on HJ . This follows
from covering space theory: the map C× → C× via z 7→ z2 is a cover, so the map Z 7→ pω(Z)
from HJ → C× lifts to the first copy of C×. Let us pick, arbitrarily, one of the two square
roots and call it pω(Z)1/2.

Now, the function g 7→ j(g, i) on HJ(R)+ has a genuine square root j1/2 on H̃J(R)+; such

a function was constructed in the Lemma 2.3.3.1. Thus αω(g) =
√
−1j1/2(g, x0)pω(gi)1/2 is

the desired function. �
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We can now state the main theorem of this section. To do so, we make some notations.
First, let n = `

2
∈ 1

2
+ Z≥0. Suppose ω ∈ WJ(R) is positive semi-definite. Let αω(g) be one

of the two square roots of 〈ω, gr0(i)〉 to H̃J(R)+. For g ∈ H̃J(R)+, define

(8) Wω,αω(g) = ν(g)n+1
∑

−n≤v≤n

(
|αω(g)|
αω(g)

)2v

Kv(|αω(g)|2)
xn+vyn−v

(n+ v)!(n− v)!
.

Here the sum is over half-integers v ∈ 1
2

+ Z with −n ≤ v ≤ n. Note that

(1) n, v are half-integers, i.e., in 1
2

+ Z, so that n+ v and n− v are integers;
(2) ν(g) > 0 so ν(g)n+1 makes sense;
(3) 2v is an odd integer;
(4) one has Wω,−αω(g) = −Wω,αω(g);
(5) for ε ∈ µ2(Q), one has Wω,αω(εg) = εWω,αω(g).

Let NJ be the unipotent radical of the Heisenberg parabolic of GJ . This subgroup of

GJ(R) splits uniquely into G̃J so we also write NJ(R) for its image in G̃J . One can extend

Wω,αω to a function on all of G̃J as

Wω,αω(nmk) = ei〈ω,n〉k−1Wω,αω(m)

for n ∈ NJ(R), m ∈ H̃J(R)+, and k ∈ K̃J . One checks immediately that this is well-defined.

Recall that a generalized Whittaker function of weight n for ω is a function φ : G̃J →
Sym2n(V2) satisfying

(1) φ(gk) = k−1φ(g) for all g ∈ G̃J and k ∈ K̃J ;

(2) φ(ug) = ei〈ω,u〉φ(g) for all g ∈ G̃J and u ∈ NJ(R). Here u is the image of u ∈ WJ(R);
(3) Dnφ ≡ 0.

Theorem 3.2.0.2. Suppose ω ∈ WJ(R) is non-zero and n ∈ 1
2

+ Z is positive. Suppose

moreover that φ : G̃J → Sym2n(V2) is a moderate growth generalized Whittaker function of
weight n for ω.

(1) If ω is not positive semi-definite, then φ ≡ 0.
(2) If ω is positive semi-definite, then φ is proportional to Wω,αω(g).

Proof. The work is nearly identical to [Pol20], so we only sketch the proof.
Let us first review the definition of the right regular action of the Lie algebra g(J) on

smooth functions φ on G̃J . Thus suppose X ∈ g(J). Then for t ∈ R sufficiently small,

exp(tX) is an element of GJ(R) near the identity. Because G̃J → GJ(R) is a covering space,

there is a unique lift, call it exp′(tX), of exp(tX) to G̃J that is near the identity of G̃J . Then
(Xφ)(g) := d

dt
φ(g exp′(tX))|t=0. It is a fact that this definition gives a linear action of the

real Lie algebra g(J) on smooth functions on G̃J . One obtains an action of g(J) ⊗ C by
complexification.

Let now φ =
∑

v φv
xn+vyn−v

(n+v)!(n−v)!
be a generalized Whittaker function. (To make notation

consistent with [Pol20], λ = ω.) By the Iwawasa decomposition G̃J = R+
J K̃J , and because

φ is K̃J -equivariant by definition, to determine φ it suffices to determine φ on R+
J .

Now, recall that R+
J splits into G̃J . Thus φ|R+

J
can be thought of as function on the linear

group GJ(R), so we may apply [Pol20, Corollary 7.6.1] to obtain differential equations
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satisfied by φ: Indeed, the proof of this corollary is to write a basis of X ∈ p as sums

X = X1 + X2, with X1 ∈ Lie(R+
J ) ⊗ C and X2 ∈ Lie(KJ) ⊗ C = Lie(K̃J) ⊗ C, and use

the given action of Lie(KJ) = Lie(K̃J) on φ to write the differential equation Dnφ ≡ 0 in
explicit coordinates on R+

J . In [Pol20, Corollary 7.6.1] recall that:

• w ∈ R×>0 is considered as an element in the center of the group HJ(R)+ which acts
on E13 as the real number w2 (as opposed to w−2). The element w is in R+

J so the

group of such w’s splits into G̃J .

• Z̃ = Mr0(i) and r0(Z) = (1,−Z,Z#,−n(Z)).
• for E ∈ J , DZ(E) denotes the action of the Lie algebra element 1

2
M(Φ1,E)− inL(E),

where Φ1,E is the map J → J given by Z 7→ {E,Z} (see [Pol20, Subsection 3.3.2,
equation (7)]; see also [Pol20, Subsection 3.3, equation (3)]) and M(Φ1,E) is defined
in Subsection 3.4.1 at the top of page 1229 of [Pol20].
• V (E) is defined in Subsection 5.1, equation (19) of [Pol20].

Now, one solves these equations on a connected open subset U of HJ where pω(Z) 6= 0.
To do this, one first argues as in section 8.1 of [Pol20] that φv(w,X, Y ) (see section 8.2,

page 1257) is of the form w2n+2Yv(m)Kv(|〈ω, Z̃〉|) for some function Yv(m) that does not
depend on w. Indeed, the differential equations

(1) (w∂w − 2(n+ 1) + k)φk = −〈ω, Z̃∗〉φk−1

(2) (w∂w − 2(n+ 1)− k)φk = −〈ω, Z̃〉φk+1

from [Pol20, Corollary 7.6.1], taken together, imply that w−2n−2φv(w,X, Y ) satisfies Bessel’s
differential equation. The fact that this function must be of moderate growth as w → ∞
then implies that, as a function of w, it is proportional to Kv(|〈ω, Z̃〉|).

To understand the functions Yv(m) = Yv(X, Y ), one argues as on the top of page 1257 to
obtain that φ(w,X, Y ) = φ(w,m) is of the form Y ′1/2(m)Wω,αω(g) for some function Y ′1/2(m)
that does not depend on w. In other words, one uses the differential equations in w above
again to relate Yv(m) to Yv+1(m) for each v. Note that the function Y ′1/2(m) descends to the
linear group.

Now one proves that the Wω,αω are annihilated by the operator Dn, exactly as in the
proof of Proposition 8.25 of [Pol20]. Note that in this proof, the term |αω(g)|αω(g)−1 is
rewritten as a product of |αω(g)|−1 and a term that is annihilated by DZ(E). Moreover, the
absolute value |αω(g)|−1 descends to the linear group. This is why the manipulations of
[Pol20] carry over to this half-integral weight case. In any event, it follows from this that
DZ(E)(Y

′
1/2(m)) = 0 and DZ(E)∗(Y

′
1/2(m)) = 0, from which one concludes Y ′1/2(m) is constant.

Thus the Wω,αω are annihilated by the operator Dn, and on an open subset where
pω(Z) 6= 0, any moderate growth solution agrees with the Wω,αω up to constant multiple.
The rest of the argument now follows as in the proof of Proposition 8.2.4 of [Pol20]. �

From Theorem 3.2.0.2 follows immediately the definition of Fourier coefficients of modular
forms of weight `

2
: let Z = [NJ , NJ ] denote the one-dimensional center of NJ . Let ϕ be

a modular form for G̃J(A) of weight `
2

and level (KT , sT ) as in Definition 3.1.0.1. Set
ϕZ(g) =

∫
Z(Q)\Z(A)

ϕ(zg) dz and

ϕN(g) =

∫
NJ (Q)\NJ (A)

ϕ(ng) dn.

Then we have the following generalization of [Pol20, Corollary 1.2.3].
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Corollary 3.2.0.3. For each positive semi-definite for ω ∈ WJ(Q), there exist a con-

stant aϕ(ω), well-defined up to multiplication by ±1, such that for g ∈ G̃J ⊆ G̃J(A),

ϕZ(g) = ϕN(g) +
∑

ω∈WJ (Q)

aϕ(ω)W2πω(g),

where the sum runs over over positive semi-definite vectors. The function W2πω(g) is one
element of the set {W2πω,α2πω ,−W2πω,α2πω}.

The complex number aϕ(ω) is thus well-defined up to multiplication by ±1. These
numbers aϕ(ω) ∈ C/{±1} are, by definition, the Fourier coefficients of ϕ.

3.2.0.1. Remark on K-Bessel functions. The K-Bessel functions Kv(z) in the definition
of the Whittaker functions Wω,αω only occur for half-integral values of v. This is especially
nice as these satisfy the following classical lemma.

Lemma 3.2.0.4. the K-Bessel function satisfies the following facts.

(1) For any value of v,

−zv(∂z(z−vKv(z))) = Kv+1(z),

(2) For any value of v,

K−v(z) = Kv(z).

(3) We have

K1/2(z) =

√
π

2z
e−z.

Thus, the functions Wω,αω are particularly simple as functions of αω(g) and ν(g). For
example, when l = 1, we have

Wω,αω(g) =

√
πν(g)3

2

e−|αω(g)|2

|αω(g)|

[(
|αω(g)|
αω(g)

)
x+

(
αω(g)

|αω(g)|

)
y

]
if g ∈ H̃J(R)+.

3.3. The minimal modular form of F̃4(A)

Our first application is the existence of a particular modular form of weight 1/2 on F̃4(A)
with exceptionally few non-zero Fourier coefficients in the sense of Lemma 3.3.0.2 below.

Set UF4(4) = K ′R(4)
∏

p>2 F4(Zp) ⊆ F4(Af ).

Theorem 3.3.0.1. There exists a modular form ΘF4 on F̃4(A) of weight 1
2

which satisfies
the following properties:

(1) ΘF4 is constructed from the automorphic minimal representation;
(2) the level of ΘF4 is UF4(4);
(3) the (0, 0, 0, 1)-Fourier coefficient of ΘF4 is equal to ±1.

The proof of this theorem is representation theoretic, relying on the analysis of the

automorphic minimal representation Πmin of F̃4(A), and takes up all of Chapter 4. We defer
the discussion of this representation until then. We do however need the following properties
of ΘF4 , which follow from the minimality of Πmin.
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To simplify notation, set Θ = ΘF4 . The automorphic function Θ has Fourier expansion

ΘZ(g) = ΘN(g) +
∑

ω∈WJ (Q)

Θω(g).

Here, for g ∈ F̃4(A), we have

Θω(g) =

∫
NJ (Q)\NJ (A)

Θ(ng)ψ−1(〈ω, n〉)dn.

Recall the notion of rank of an element ω ∈ WJ(Q) as defined in [Pol18, Definition 4.2.9
and Definition 4.3.2].

Lemma 3.3.0.2. Let the notation be as above.

(1) If γ ∈ H1
J(Q), then Θω(γg) = Θω·γ(g). If γ ∈ ΓF4(4)∩H1

J(R), and g = g∞ is in the

image of F̃4(R)→ F̃4(A), then Θω(sΓ(γ)g) = Θω·γ(g).
(2) One has Θω ≡ 0 unless rk(ω) ≤ 1.

(3) Suppose g = g∞ is in the image of F̃4(R) → F̃4(A) and ω is of rank one. Then
Θω(g) ≡ 0 unless ω lies in the lattice WJ(Z) = Z⊕ J0 ⊕ J0 ⊕ Z.

Proof. The first part of the first claim follows easily from the usual change of variables
in the integral defining Θω. For the second part of the first claim, we have

Θω(sΓ(γ)g) = Θω(sΓ(γ)gsf (γ)) = Θω(sQ(γ)g) = Θω·γ(g)

using that Θ is right invariant under sf (ΓF4(4)).
The second claim follows from the construction of Θ from Πmin in Chapter 4 and the min-

imality of Πmin. More specifically, the claim follows directly from Proposition 3 of [Gin19].
For the final claim, let WJ(Z)∨ be the dual lattice to WJ(Z) under the symplectic form,

so that WJ(Z)∨ = Z⊕J∨0 ⊕J∨0 ⊕Z. We first prove that Θω(g) vanishes unless ω is in WJ(Z)∨.

To see this, suppose n0 ∈ WJ(Ẑ) = WJ(Z)⊗ Ẑ and n = exp(n0) ∈ F̃4(Af )→ F̃4(A). Then
n ∈ KR(4)

∏
pKp, so Θ is right-invariant by n. But then

Θω(g) = Θω(gn) = ψ(〈ω, n0〉)Θω(g).

Consequently, if Θω(g) 6= 0, then 〈ω, n0〉 ∈ Ẑ for all n0 ∈ WJ(Ẑ), so ω ∈ WJ(Z)∨.
For the stronger claim that Θω(g) vanishes unless ω ∈ WJ(Z) ⊆ WJ(Z)∨, we use the

following lemma. �

Lemma 3.3.0.3. If ω ∈ WJ(Z)∨ is of rank one, then ω ∈ WJ(Z).

Proof. Write ω = (a, b, c, d). Then b# = ac ∈ J∨0 and c# = db ∈ J∨0 by [GS05,
Proposition 11.2]. But an elementary check shows that if X ∈ J∨0 and X# ∈ J∨0 then in fact
X ∈ J0. The lemma follows. �

3.4. Pullback to G2

We have defined an inclusion G̃2(A) ⊆ F̃4(A) in section 2.8.3 and a modular form ΘF4 on

the latter group. Let ΘG2 be the automorphic function that is the pullback of ΘF4 to G̃2(A),
which is evidently smooth of moderate growth and satisfies the equivariance property (1).
In fact, it also satisfies the requisite differential equation.

Proposition 3.4.0.1. The automorphic function ΘG2 is a weight 1
2

quaternionic modular

form on G̃2(A).
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Proof. This follows just as in [Pol21, Corollary 4.2.3]. �

In this section, we partially compute the Fourier expansion of ΘG2 . For g ∈ F̃4(R) we
have

ΘZ(g) = ΘN(g) +
∑

ω∈WJ (Z)
rk(ω)=1

a(ω;α2πω)W2πω;α2πω(g)

with a(ω;−α2πω) = −a(ω;α2πω).
Suppose γ ∈ ΓF4(4) ∩H1

J(R). Define αγ2πω(g) = α2πω(γg). Note that

αγ2πω(g)2 = 2π〈ω, γg · r0(i)〉 = 2π〈ω · γ, g · r0(i)〉,

so that αγ2πω is an α2πω·γ, and W2πω;α2πω(γg) = W2πω·γ,αγ2πω(g).

Lemma 3.4.0.2. For γ ∈ ΓF4(4) ∩ H1
J(R), one has an equality of Fourier coefficients

a(ω;α2πω) = a(ω · γ;αγ2πω).

Proof. By Lemma 3.3.0.2, one has Θω(γg) = Θω·γ(g). Thus

a(ω;α2πω)W2πω;α2πω(γg) = Θω(γg) = Θω·γ(g) = a(ω · γ;αγ2πω)W2πω·γ;αγ2πω
(g)

= a(ω · γ;αγ2πω)W2πω;α2πω(γg).

Consequently, a(ω;α2πω) = a(ω · γ;αγ2πω). �

We now consider the Fourier coefficients of ΘG2 = ΘF4|G̃2(A). We require the following
two lemmas. Recall that the Fourier coefficients of a modular form on G2 are parameterized
by elements of WQ(Q), which may be thought of as Sym3(Q2) by sending

(r, s, t, z) ∈ WQ(Q) 7−→ ru3 + 3su2v + 3tuv2 + zv3 ∈ Sym3(Q2).

If ω = (a, b, c, d) ∈ WJ(Q), set tr(ω) =
(
a, tr(b)

3
, tr(c)

3
, d
)
∈ Sym3(Q2), so that tr(ω) corre-

sponds to the binary cubic form au3+tr(b)u2v+tr(c)uv2+dv3. Now, for each ω′ ∈ Sym3(Q2),
fix a choice of α2πω′(g). Note that for ω ∈ WJ(Q) the restriction of α2πω(g) to the Heisenberg

Levi in G̃2(R) ⊂ F̃4(R), is of the form ε(ω; tr(ω))α2π tr(ω)(g) where ε(ω; tr(ω)) ∈ {±1}.

Lemma 3.4.0.3. Suppose ϕ is a modular form on F̃4(A) of weight `
2
, with Fourier ex-

pansion ϕZ(g) = ϕN(g) +
∑

ω∈WJ (Q) a(ω;α2πω)W2πω;α2πω(g). Let ϕ′ be the restriction of ϕ

to G̃2(A). Then ϕ′ is modular form on G̃2(A) of weight `
2
, with Fourier expansion

ϕ′Z′(g) = ϕ′N ′(g) +
∑

ω′∈Sym3(Q2)

b(ω′;α2πω′)W2πω′;α2πω′
(g),

where N ′ ⊂ G2 denotes the unipotent radical of the Heisenberg parabolic. The Fourier
coefficients b(ω′;α2πω′) are given as follows:

b(ω′;α2πω′) =
∑

ω∈WJ (Q):tr(ω)=ω′

ε(ω;ω′)a(ω;α2πω).

The sum, a priori infinite, is in fact finite.
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Proof. The point is that one can simply restrict the Fourier expansion of ϕ to G̃2(R)
to obtain the Fourier expansion of ϕ′. In more detail, one checks that when the function

Wω,α2πω on F̃4(R) is restricted to G̃2(R), one obtains the function ε(ω; tr(ω))W2π tr(ω);α2π tr(ω)

on G̃2(R). We omit the proof of the finiteness claim, as we do not really need it, but we note
that it follows from the vanishing of the Fourier coefficients that are not positive semidefinite,
and that a similar argument can be found in [Pol21, Section 5.1]. �

In particular, if we can control the signs ε(ω;ω′), we can use our knowledge of the Fourier
expansion of ΘF4 to obtain information about the Fourier expansion of ΘG2 . The following
lemma controls the signs ε(ω;ω′).

Below, for T ∈ J0, we set n(T ) = exp(δ2⊗T ), which are unipotent elements of H1
J ⊆ F4.

Lemma 3.4.0.4. Suppose γ1 = n(T1) and γ2 = n(T2) are such that det(T1t+1) = det(T2t+

1). Then αγ12π(0,0,0,1) and αγ22π(0,0,0,1) have equal (as opposed to opposite) restrictions on G̃2(R).

Proof. We have α2πω(g) =
√
−1j1/2(g, x0)p2πω(gi)1/2 for a fixed squareroot of p2πω(Z).

Thus
αγi2π(0,0,0,1)(1) = α2π(0,0,0,1)(γi) =

√
−1j1/2(n(Ti), x0)p2π(0,0,0,1)(γi · i)1/2.

Note that p2π(0,0,0,1)(Z)1/2 is constant. We thus must analyze j1/2(n(Ti), x0). But now

note that there is a unique splitting n(J3(R)) → F̃4(R), this splitting is continuous, and
by Lemma 2.7.0.4, this continuous splitting agrees with the splitting over ΓF4(4). Conse-
quently j1/2(n(T ), x0) is a continuous function of T ∈ J3(R), and thus a fixed squareroot of
det(Ti+ 1). Now, by Lemma 3.5.1.4 proved below, there is a path of gt ∈ SO3(R) (which is
connected) connecting T1 to T2. Thus det(T1i + 1)1/2 varies continuously to det(T2i + 1)1/2

via det(gtT1g
t
ti+1)1/2. But det(gtT1g

t
ti+1) = det(T1i+1) because gt ∈ SO3(R). The lemma

follows. �

To describe the Fourier coefficients of ΘG2 , we require the following definition.

Definition 3.4.0.5. Recall that J0 := S2(Z3) = H3(Z) denotes the symmetric 3 × 3
matrices with integer entries. If X ∈ J0, then det(tI +X) is a monic cubic polynomial with
integer coefficients. For a cubic monic polynomial p with integer coefficients, let

Qp := {X ∈ J0 : det(tI +X) = p(t)}
be the set of X in J0 with det(tI +X) = p(t).

The set Qp is finite, and can only be nonempty when p(t) has three real roots. In fact,
it can be empty even when p(t) has three real roots.

We now assume that ΘF4 is normalized so that its (0, 0, 0, 1)-Fourier coefficient is ±1.
Putting everything together, we have the following result computing a family of Fourier
coefficients of ΘG2 .

Theorem 3.4.0.6. The pullback ΘG2 of ΘF4 to G̃2(A) has the following Fourier coeffi-
cients: If a, b, c are integers and p(u, v) = au3 + bu2v + cuv2 + v3, then the p(u, v) Fourier
coefficient of ΘG2 is ±|Qp(1,t)|.

Proof. By Lemma 3.4.0.4 and Lemma 3.4.0.3, the Fourier coefficient of ΘG2 corre-
sponding to p(u, v) is the sum of the Fourier coefficients of ΘF4 corresponding to elements
(det(T ), T#, T, 1) in WJ with T ∈ J0 and det(t1 + T ) = p(1, t). Thus the desired Fourier
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coefficient of ΘG2 is given by a sign times the number of T ′ ∈ J0 with det(tI + T ′) = p(1, t).
This is |Qp(1,t)|, as claimed. �

3.5. Arithmetic invariant theory

The purpose of this section is to do some arithmetic invariant theory related to the set
Qp. In particular, if R = Z[t]/(p(t)), then we relate Qp to the sets QR defined as follows. Set
E = R ⊗Q and assume that p(t) is such that E is an étale Q-algebra. If I is a fractional
ideal of R and µ ∈ E× is totally positive, again as before say that (I, µ) is balanced if

• µI2 ⊆ d−1
R

• N(µ)N(I)2disc(R/Z) = 1.

Note that this all makes sense, regardless of if E is a field. One puts on pairs (I, µ) an
equivalence relation: (I, µ) ∼ (βI, β−2µ) for β ∈ E× and letsQR denote the set of equivalence
classes.

3.5.1. The case of a field. Let R = Z[t]/(p(t)) be a monogenic order in a totally real
cubic field E = R⊗Q. Observe that the group SO3(Z) acts on the set Qp by X 7→ gXgt.

Lemma 3.5.1.1. Suppose T ∈ J0 has det(tI + T ) = p(t). Then SO3(Z) acts freely on T ,
i.e., if g ∈ SO3(Z) and gTgt = T , then g = 1.

Proof. Suppose g ∈ SO3(Z), and T = gTgt = gTg−1. Then g commutes with T , so
g ∈ Q[T ]. It follows that g is symmetric, so 1 = ggt = g2. Thus g ∈ µ2(Q[T ]). But Q[T ] is
a field by assumption, so g = ±1. Because det(g) = 1, g = 1, proving the lemma.

Note that the lemma is false if we do not assume R⊗Q is a field. �

The following lemma is well-known.

Lemma 3.5.1.2. Suppose M = Z3 has a symmetric bilinear form on it ( , ) which is
integral, i.e., (v, w) ∈ Z for all v, w ∈ M . Suppose moreover that the bilinear form ( , ) is
positive-definite and of determinant one, i.e. det((vi, vj)) = 1 for a basis v1, v2, v3 of M over
Z. Then M has an orthonormal basis v′1, v

′
2, v
′
3.

Here is the main result of this section.

Proposition 3.5.1.3. Suppose R = Z[t]/(p(t)) is an order in a totally real cubic field
E = R ⊗ Q. Then there is a bijection (to be given in the proof) between the sets QR and
SO3(Z)\Qp. In particular, |Qp| = | SO3(Z)| · |QR| = 24|QR|.

As mentioned in the introduction, this proposition essentially follows from the work in
[Swa21]. Because [Swa21] is much more general, we give a direct proof of this simple case
that we need.

Proof. Let ω be the image of t in R = Z[t]/(p(t)). Associated to a T ∈ J0 with
det(tI + T ) = p(t), we obtain a module M = Z3, together with a unimodular quadratic
form ( , ) and orthonormal basis e1, e2, e3. The element T defines an action of R on M ,
via ωm = −Tm. Because T is symmetric, this action is symmetric for the bilinear form:
(v, λw) = (λv, w) for all v, w ∈M and λ ∈ R.

We can think of M as a fractional ideal I of E := R⊗Q. That is, I = Ze1+Ze2+Ze3 with
e1, e2, e3 ∈ E such that −ωei =

∑
j Tijej. Moreover, because the action of R is symmetric,

the bilinear form on I is of the form (v, w) = tr(µvw) for some fixed µ ∈ E×. Because the
bilinear form is positive definite and because E is totally real, µ must be totally positive. We
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thus obtain a pair (I, µ). The choice of I is well-defined up to scalar multiple. We claim that
the pair (I, µ) is balanced. To see this, first note that because our form (v, w) = tr(µvw) is
integral on I, and I is a fractional ideal, we have µI2 ⊆ d−1

R . Now, one checks easily that
det((tr(µvivj))) = N(µ) det((tr(vivj))). Thus

1 = det((ei, ej)) = N(µ) det(tr(eiej)) = N(µ)N(I)2disc(R/Z).

Thus, out of T ∈ Qp, we have constructed a class [I, µ] in QR. Tracing through the maps,
one sees that [I, µ] is well-defined. Moreover, if g ∈ SO3(Z), then g · T maps to the same
pair [I, µ], because the action of g just changes the basis e1, e2, e3 of I.

In the reverse direction, suppose given a pair (I, µ) with (I, µ) balanced. Then the
pairing (v, w) = tr(µvw) on I is integral. Moreover, if v1, v2, v3 is an integral basis of I,
then det((vi, vj)) = det(tr(µvivj)) = N(µ)N(I)2disc(R/Z) = 1. By Lemma 3.5.1.2, I has an
orthonormal basis e1, e2, e3. We thus obtain T := −((ei, ωej))ij with det(tI+T ) = p(t). The
basis e1, e2, e3 is well-defined up to the action of O3(Z) = {±1} × SO3(Z) so the element T
is well-defined in the orbit space SO3(Z)\Qp.

The maps described above are inverse bijections. Noting that | SO3(Z)| = 24, the propo-
sition follows. �

The following lemma was used above.

Lemma 3.5.1.4. The group SO3(R) acts transitively on the set of T ∈ J0 ⊗R with fixed
characteristic polynomial p(t).

Proof. Because O3(R) = {±1}×SO3(R), it suffices to see that O3(R) acts transitively.
But now, every real symmetric matrix can be diagonalized by an element of O3(R). Using
the action of the symmetric group S3 ⊆ O3(R) finishes the proof. �

We end this section by discussing the set QR when R is a maximal order in E.

Proposition 3.5.1.5. Suppose R is the maximal order in E. Then if QR is non-empty,
|QR| = |Cl+E[2]|, the size of the two-torsion in the narrow class group of E.

To prove the proposition, we will use the following lemma. Consider the group AR
of equivalence classes of pairs (J, λ) with λJ2 = (1), J a fractional E-ideal and λ totally
positive. That is, (J, λ) is equivalent to (J ′, λ′) if there exists µ ∈ E× so that J ′ = µJ and
λ′ = µ−2λ. It is clear that QR, when non-empty, is a torsor for AR. Let A′R denote the set
of such pairs (J, λ) except modulo the equivalence relation (J, λ) is equivalent to (J ′, λ′) if
there exists µ ∈ E×>0 so that J ′ = µJ and λ′ = µ−2λ.

Lemma 3.5.1.6. One has the following exact sequences:

(9) 1→ R×>0/(R
×
>0)2 → A′R → Cl+E[2]→ 1,

and

(10) 1→ E×/
(
±E×>0

)
→ A′R → AR → 1.

Proof. We first consider the sequence (9). The map A′R → Cl+E is given by sending
[J, λ] to [J ] ∈ Cl+E. Because [J2] = (λ−1) with λ totally positive, [J ] ∈ Cl+E[2]. It is clear that
this map is surjective.

For the kernel, if [J ] = 1 in Cl+E, then J = (ε) with ε totally positive. Consider λε2.
This is in R×>0. The element ε is well-defined up to multiplication by an ε1 ∈ R×>0, so λε2

39



gives a well-defined class in R×>0/(R
×
>0)2. It is checked immediately that this map gives an

isomorphism of the kernel of {A′R → Cl+E[2]} with R×>0/(R
×
>0)2.

Now consider the sequence (10). The map A′R → AR is dividing out by the courser
equivalence relation. The kernel of this map is the image in A′R of the set of pairs ((µ), µ2)
with µ ∈ E×. This is trivial in A′R precisely when there exists µ′ ∈ E×>0 so that ((µ), µ2) =
((µ′), µ′2), which happens precisely if µ ∈ ±E×>0. The lemma follows. �

Proposition 3.5.1.5 follows from Lemma 3.5.1.6 by observing that both R×>0/(R
×
>0)2 and

E×/
(
±E×>0

)
have size 4. Finally, again assuming that R is the maximal order in E, we

remark that it follows from [Gro03, Proposition 3.1] thatQR is non-empty if and only if every
quadratic extension of E that is unramified at all finite primes is totally real. Combining
Proposition 3.5.1.3 with Theorem 3.4.0.6 gives Theorem 1.2.5.1. Combining the result with
Proposition 3.5.1.5 gives Theorem 1.1.0.2.

3.5.2. The general case. In the previous subsection, we discussed the arithmetic in-
variant theory of the sets Qp when E = R⊗Q is a field. We now make some remarks about
the arithmetic invariant theory of the sets Qp when E is just an étale cubic Q-algebra. We
omit the proofs, as they are simple generalizations of the proofs in the previous subsection.

Recall that if p(t) ∈ Z[t] is cubic and monic thenQp denotes the set of T ∈ J0 = Sym2(Z3)
such that det(t13 + T ) = p(t).

One has the following bijection.

Proposition 3.5.2.1. There is a bijection between equivalence classes of balanced pairs
QR and the O3(Z) (or, equivalently SO3(Z)) orbits on Qp. Moreover, the stabilizer of T ∈ Qp

under the action of O3(Z) is µ2(OI) where

OI = {α ∈ E : αI ⊆ I}.

As a consequence of the proposition, one obtains:

#Qp =
∑

[(I,µ)] balanced

#O3(Z)

µ2(OI)
.

In particular, if R is maximal so that OI = R for all I, then

#Qp =
48

µ2(R)
×#{[(I, µ)] balanced}.

In this maximal case, assuming that E is étale, one has that (I, µ) is balanced precisely
if µI2 = d−1

R . Now one can consider the exact sequences as in Lemma 3.5.1.6, which become:

1→ R×>0/(R
×
>0)2 → A′R → Cl+E[2]→ 1

and
1→ E×/(µ2(E)E×>0)→ A′R → AR → 1.

Considering the different cases separately, one sees that in all étale maximal cases, #AR =
#Cl+E[2]. Thus, if R is maximal and E is étale, one has the formula

#Qp =
48

µ2(R)
|Cl+E[2]| × δR

where δR is 0 if the inverse different d−1
R is not a square in Cl+E and 1 if it is such a square.

We state this as a proposition.
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Proposition 3.5.2.2. Let the notation be as above, and assume that R = Z[t]/(p(t))
is the maximal order in E = R ⊗ Q, which is assumed étale. Then #AR = #Cl+E[2].
Consequently, #Qp = 48

µ2(R)
|Cl+E[2]| × δR where δR is 0 if the inverse different d−1

R is not a

square in Cl+E and 1 if it is such a square.

Note that if R = Z × OK with K real quadratic, then Cl+E = Cl+K . For the sake of
completeness, we now answer the question of when the maximal order in such a case is
monogenic.

Proposition 3.5.2.3. Set R = Z×OK with K a real quadratic field.

(1) If ` is squarefree and OK = Z[
√
`], then R is monogenic if and only if ` = r2 ± 1

for some r in Z. In this case, (r,
√
`) is a generator of R.

(2) If OK = Z[ω] with ω = 1+
√

4`+1
2

, then R is monogenic if and only if the equation
r(r − 1) = `± 1 has a solution, in which case (r, ω) is a generator.

3.5.3. Table of data. We now present a table of numerical data for the Fourier coef-
ficients |Qp| of ΘG2 . The rings R were checked to be maximal (monogenic) orders by the
L-function and Modular Form Database (LMFDB) [LMF20]. The computer algebra system
SAGE [Sag22] was used to compute the narrow class groups Cl+E. In the table, the notation
Cn denotes the cyclic group of order n.

p(t) structure maximal monogenic (LMFDB) #Qp Cl+E (SAGE)
t3 − t2 − 2t+ 1 cubic field yes 24 1
t3 − 3t− 1 cubic field yes 24 1

t3 − t2 − 3t+ 1 cubic field yes 24 1
t3 − t2 − 9t+ 10 cubic field yes 48 C4

t3 − t2 − 14t+ 23 cubic field yes 48 C4

t3 − t2 − 11t+ 12 cubic field yes 48 C4

t3 − t2 − 12t− 1 cubic field yes 48 C4

t3 − 5t− 1 cubic field yes 24 1
t3 − t2 − 9t+ 8 cubic field yes 0 C6

t3 − 21t− 35 cubic field yes 24 C3

(t− 1)(t2 − 2) quadratic yes 12 1
(t− 2)(t2 − 3) quadratic yes 0 C2

(t− 3)(t2 − 10) quadratic yes 24 C2

t3 − t2 − 54t+ 169 cubic field yes 96 C2 × C2

t3 − t2 − 34t− 57 cubic field yes 96 C4 × C2

41



CHAPTER 4

The automorphic minimal representation

In this chapter, we construct and study the modular form ΘF4 of weight 1
2

on the double
cover of F4 and prove Theorem 3.3.0.1 via a careful analysis of the automorphic minimal

representation of F̃4(A).

4.1. Review of the construction

We begin by reviewing the construction of the automorphic minimal representation Πmin

on F̃4(A), following Loke–Savin [LS10], and then Ginzburg [Gin19].
Recall that we have ordered the simple roots of F4 in the usual way, so that the Dynkin

diagram
◦ − − − ◦ =>= ◦ − − − ◦

has labels α1 through α4 from left to right. Define mα1 = mα2 = 2 and mα3 = mα4 = 1. Let
p be a place of Q, allowing p =∞. We begin with the following lemma.

Lemma 4.1.0.1. Let T̃ (Qp) denote the inverse image of the fixed split maximal torus

of F4(Qp) in F̃4(Qp), and Z(T̃ (Qp)) its center. Then t ∈ Z(T̃ (Qp)) if and only if t =

±
∏

i h̃αi(t
mi
i ).

Proof. One applies the commutator formula (4) {h̃α(s), h̃β(t)} = (s, t)(α∨,β∨). �

We will also have need of a maximal abelian subgroup at every local place. This is
handled uniformly by the following lemma.

Lemma 4.1.0.2. For any place p ≤ ∞, the subgroup

T∗(Qp) := ±h̃α1(Q
×
p )h̃α2((Q

×
p )2)h̃α3(Q

×
p )h̃α4(Q

×
p )

is a maximal abelian subgroup of T̃ (Qp).

Proof. This is an easy check using the commutator formula. �

For each p, we let B∗(Qp) = T∗(Qp)UB(Qp) denote the associated subgroup of B̃(Qp).

Definition 4.1.0.3. A genuine character χp of Z(T̃ (Qp)) is said to be exceptional if

for each simple root α, χp(h̃α(tmα)) = |t|v. We let νexc := (1/mα)α ∈ X∗(T )⊗Z R to be the
associated exponent.

Lemma 4.1.0.1 implies that there is a unique exceptional character χp on the center of

the covering torus of F̃4(Qp). Let χexc =
∏

p χp be the induced character on Z(T̃ (A)). Note
that χ is automatically automorphic by the product formula.

We consider the subgroup of T̃ (A) given by

T∗(A) := T (Q)Z(T̃ (A));
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this is a maximal abelian subgroup [Wei16, Theorem 4.1]. Abusing notation, write χexc for

the automorphic extension of χexc from Z(T̃ (A)) to T∗(A). Inflating χexc to a character of
B∗(A) := T∗(A)UB(A), consider the induced representation

V0 := Ind
F̃4(A)
B∗(A)(δ

1/2
B χexc),

where δB is the modular character of B(A).

Remark 4.1.0.4. In their construction of this representation, Loke and Savin instead de-

fine a representation π(χexc) of T̃ (A), inflate to B̃(A), then induce to F̃4(A). It follows from
[LS10, Proposition 4.1 and Proposition 5.3] that their π(χexc) is an irreducible representa-

tion of T̃ (A) with the same central character as Ind
T̃ (A)
T∗(A)(χexc), so they are isomorphic. In

fact, both representations are realized as spaces of functions on T (Q)\T̃ (A), and we claim
that they are identical. This is because there is, in the terminology of [LS10], a unique

genuine representation in AT (Q)\T̃ (A) that is invariant under MsT
1
2

∏
p>2 Tp; see [LS10,

Corollary 5.2]. (This is true for F4, but not true in general.)

For s = (s1, s2, s3, s4) ∈ C4, define ωs a character of T (A) as ωs(hαi(ti)) = |ti|si . Set

Vs = Ind
F̃4(A)
B∗(A)(δ

1/2
B χexcωs).

Let f(g, s) be a flat section in this induced representation, and set

E(g, f, s) =
∑

γ∈B(Q)\F4(Q)

f(γg, s).

The automorphic minimal representation on F̃4(A) is constructed as the residue of these
Eisenstein series at a distinguished point.

Theorem 4.1.0.5. [LS10, Theorem 7.1] The Eisenstein series E(g, f, s) have at worst
a simple multi-pole at s = 0. Let

θ(g, f) = lim
s→0

s1s2s3s4E(g, f, s)

and Πmin be the space of these residues θ(g, f). Then θ(g, f) is a genuine, square-integrable

automorphic form on F̃4(A). Moreover, the representation Πmin is irreducible.

Remark 4.1.0.6. In [LS10], this theorem is proved for the associated automorphic rep-
resentation on the double cover of all split simply-connected semisimple groups over Q.
These are examples of generalized theta representations, which play a fundamental role in
the study of automorphic representations of non-linear covering groups; see for example
[Pat84, CFH12, BFG03, FG18, Les19] for some conjectures and aspects of this area.

Write Πmin = ⊗′pΠmin,p. Then Loke–Savin also identify the representations Πmin,p in

terms of principal series. To do this, extend the character χp of Z(T̃ (Qp)) to the subgroup

B∗(Qp), and let Ip = Ind
F̃4(Qp)

B∗(Qp)(δ
1/2
B χp).

Proposition 4.1.0.7. [LS10, Proposition 6.3] The representation Ip has a unique irre-
ducible quotient, which is Πmin,p.
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The notation Πmin references Ginzburg’s theorem [Gin19, Theorem 1] that Πmin is an
automorphic minimal representation in the sense that the set of nilpotent elements asso-
ciated to non-vanishing Fourier–Whittaker coefficients of Πmin are contained in the minimal
nilpotent orbit Omin ⊂ f4(Q); we refer the reader to [Gin14] for the notions of Fourier–
Whittaker coefficients associated to nilpotent orbits. This result plays a central role in our
analysis of the Fourier expansion of ΘF4 ; see Lemma 3.3.0.2.

4.2. Archimedean aspects

Relating these generalized theta series to quaternionic modular forms requires informa-

tion of the K̃∞-types of the local representation Πmin,∞. This representation turns out to be
the same as the representation ΠGW constructed by Gross–Wallach in [GW94].

Proposition 4.2.0.1. The representation Πmin,∞ is isomorphic to the minimal repre-

sentation ΠGW constructed by Gross–Wallach; its K̃∞ = SU(2)× Sp(6)-types are

(11)
∞⊕
n=0

Sym1+n(C2) � V(nω3),

where ω3 is the 3rd fundamental weight of Sp(6) and V(nω3) denotes the irreducible rep-

resentation of Sp(6) with highest weight nω3. In particular, Πmin,∞ has minimal K̃∞-type
V1/2.

Proof. Note that, from [LS10, Proposition 6.3], Πmin,∞ is the Langlands quotient of
the principal series representation

Ind
F̃4(R)
B∗(R)(δ

1/2
B χ∞) ∼= IndG

B̃
(π(χ∞)),

where χ∞ is the exceptional character and π(χ∞) ∼= δ̃� χ∞ is the induced representation of

T̃ (R) = M̃ ·T (R)◦. Here M̃ is a certain finite subgroup of T̃ (R) and T (R)◦ is the connected
component of the identity of the covering torus. Note we use the fact that

(12) νexc =

(
1

2
,
1

2
, 1, 1

)
= ρ− 1

2
(ω1 + ω2) ∈ t∗ := X∗(T )⊗Z R

lies in the dominant chamber in identifying Πmin,∞ as the Langlands quotient.
Referring the reader to [ABP+07, Sections 4 and 5] for the notions of pseudospherical

representations and notation, in the decomposition

π(χ∞) = δ̃ � χ∞,

the two dimensional representation δ̃ is a pseudospherical representation of M̃ . It is easy

to check that there is a unique such representation for G̃ = F̃4(R), and it arises as the

restriction of the K̃∞ = SU(2)× Sp(6)-representation V1/2 to M̃ ⊂ K̃∞. In particular, V1/2

is the unique pseudospherical K̃∞-type for G̃.
In the notation of [ABP+07], we see that Πmin,∞ is the Langlands quotient J(δ̃, νexc) of

the corresponding pseudospherical principal series

I(δ̃, νexc) = IndG̃
B̃(R)

(δ̃ � (νexc + ρ)).

By [ABP+07, Def. 5.5] and the subsequent discussion, we conclude that Πmin,∞ has the

minimal K̃∞-type V1/2. The key point, as noted in [ABP+07, Section 5], is that this
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Langlands quotient J(δ̃, νexc) is the unique irreducible representation of G̃ containing the K̃∞-
type V1/2 and having infinitesimal character νexc ∈ t∗/W . This follows from the analysis of

pseudospherical K̃∞-types in loc. cit. combined with Harish-Chandra’s subquotient theorem.
On the other hand, Gross and Wallach apply cohomological techniques to construct

the minimal representation ΠGW in [GW96]; here, minimal means the ideal of U(f4(C))

annihilating ΠGW is the Joseph ideal. In particular, they compute that the K̃∞-types of
ΠGW are precisely the representations occurring in the proposition [GW96, Section 12].
Furthermore, as an element of t∗/W , the infinitesimal character of ΠGW is

νGW := ρ− 3

2
ω1,

where ω1 is the first fundamental weight of F4 [GW96, pg.109]. Here W denotes the Weyl
group of the pair (F4, T ).

To complete the proof, it suffices to check that there exists w ∈ W such that w(νGW ) =
ν∞. Referencing (12), this is equivalent to the existence of w ∈ W such that

w •
(
−3

2
ω1

)
= −1

2
(ω1 + ω2),

where • denotes the dot action of the Weyl group of F4 on t∗. The existence of such an
element may be verified via a computer calculation, using SAGE [Sag22] for example. By
uniqueness, this proves the proposition. �

4.2.1. Modular forms of weight 1
2
. Using Proposition 4.2.0.1, we can now construct

modular forms of weight 1/2 on F̃4(A) from Πmin. Let x, y be our fixed weight basis of
V1/2 = V2 ' V∨2 . Setting Πmin,f = ⊗′p<∞Πmin,p, fix a vector vf ∈ Πmin,f and let

α : Πmin = Πmin,f ⊗ Πmin,∞ → A(F̃4(A))

be the automorphic embedding in Theorem 4.1.0.5. Define

(13) θ(vf ) := α(vf ⊗ x)⊗ x∨ + α(vf ⊗ y)⊗ y∨ ∈ A(F̃4(A))⊗ V∨2 .

One obtains a quaternionic modular form of weight 1
2

on F̃4(R). Indeed, the construction
of the Schmid operator D1/2 precisely detects the fact that the automorphic function θ(vf )

corresponds to the minimal K̃∞-type V2, so that D1/2θ(vf ) ≡ 0 for any vf . The other
required properties are clear.

Our goal for the remainder of the chapter is to prove that vf can be chosen so that θ(vf )
has UF4(4) level and nonzero (0, 0, 0, 1)-Fourier coefficient, as in Theorem 1.2.4.1.

4.3. Weil representations for GL2

To accomplish this goal, we will calculate a certain twisted Jacquet module of Πmin. For
this latter calculation, we make a detour to consider the Weil representation of GL2.

The main results of this section are Corollaries 4.3.3.4 and 4.3.3.6, asserting that if certain
Whittaker functionals vanish on particular subspaces of these Weil representations, then they
vanish identically. For this we need to compare a certain double cover of GL2(Qp) arising in
our context with other constructions in the literature. Strictly speaking, we could appeal to
the results of Kazhdan–Patterson [KP84, Section 1] to see that the representation theory
of these various covers of GL2(Qp) are related as described in Proposition 4.3.3.1. We have
opted for a more-or-less self-contained presentation for the sake of the reader.
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4.3.1. The double cover of SL2(Qp) and its Weil representation. Now set k = Qp

for any prime p, though the results of this section hold for any local field. We recall various

essentially well-known facts about the group S̃L2(k) and its Weil representation.
Let (V, q) be a quadratic space over k, and B(x, y) = q(x+y)−q(x)−q(y) the associated

bilinear form. We define a representation of S̃L2(k) on S(V ), the Schwartz space of V , which
is genuine if dim(V ) is odd.

We fix the additive character ψ of k. Fix the Haar measure dv on V that is self-dual
with respect to the Fourier transform on V as

Φ̂(v) =

∫
V

ψ((v, w))Φ(w) dw.

Define Fq(v) = ψ(q(v)), and let γ(q) ∈ C be defined as

(14) γ(q) = lim
L⊂V

∫
L

Fq(v) dv,

where the limit indicates that the value stabilizes for sufficiently large lattices L in V and
we take this value.

One defines a Weil representation of S̃L2(k) on S(V ), via:

(1) ζ · Φ(v) = (−1)dim(V )Φ(v)
(2) xα(t) · Φ(v) = ψ(tq(v))Φ(v).

(3) w1 · Φ(v) = γ(q)Φ̂(v), where w1 = w̃α(1).

(4) h̃α(y) · Φ(v) = |y|d/2γ(yq)

γ(q)
Φ(yv).

Proposition 4.3.1.1. The implied action of S̃L2(k) on S(V ) is well-defined and gives a
representation, denoted by ωψ,q. This representation is genuine when dim(V ) is odd.

Proof. We omit the proof, which is well-known. �

Consider now the special case where V = k and q(x) = x2. The genuine representation
ωψ,q is not irreducible: if S+(k) is the subspace of even Schwartz functions (ie: Φ(−x) =

Φ(x)), then S̃L2(k) preserves this subspace. This gives an irreducible representation, which
we will denote by ω+

ψ .
In [Gel76], Gelbart defines a double cover of SL2(k) via an explicit two-cocycle, as

follows. For a matrix s = ( a bc d ) define

x(s) =

{
c : if c 6= 0,

d : if c = 0.

Define

α(g1, g2) = (x(g1), x(g2))2(−x(g1)x(g2), x(g1g2))2

and S̃L
′
2(k) as the set of pairs (g, ζ) with g ∈ SL2(k) and ζ ∈ {±1} with multiplication

(15) (g1, ζ1)(g2, ζ2) = (g1g2, α(g1, g2)ζ1ζ2).

Because of the uniqueness up-to-isomorphism of the nontrivial double cover of SL2(k), this

double cover is isomorphic to S̃L2(k).
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4.3.2. Two double covers of GL2. We now define two double covers of the group
GL2(k) and consider extensions of the genuine representation ω+

ψ to these groups. Our

motivation is to relate a cover arising in our analysis of modular forms on F̃4(k) with one
considered in [GPS80].

The first construction is given via generators and relations: consider the group G̃L
(1)

2 (k)

generated by S̃L2(k) and h̃α2(t) for t ∈ k×, subject to the relations: if we let α1 denote the
simple root of SL2, then

(1) ζ is still central;

(2) h̃α2(t)x±α1(u)h̃α2(t)
−1 = x±α1(t

〈α∨2 ,±α1〉u) where 〈α∨2 ,±α1〉 = ∓1.

(3) h̃α2(s)h̃α2(t) = h̃α2(st)(s, t)2;

One can prove from these relations the following additional relations:

(4) the commutator {h̃α1(s), h̃α2(t)} = (s, t)2.

(5) w̃α1(t)h̃α2(u)w̃α1(−t) = (u−1, u−1t)2h̃α1(u)h̃α2(u)

Sending h̃α2(t) to diag(1, t), we obtain a surjective homomorphism π(1) : G̃L
(1)

2 (k) −→
GL2(k), which we claim is a double covering map extending the cover π : S̃L2(k) −→ SL2(k).
It is immediately checked that this map is well-defined. Moreover, by a Bruhat decomposition

argument, one sees that the kernel is exactly the image of µ2(k) in G̃L
(1)

2 (k). To see that

this image is nontrivial, so that G̃L
(1)

2 (k) is really a double cover of GL2(k), we note that

G̃L
(1)

2 (k) so defined is precisely the full inverse image of the subgroup GL2(k) ⊂ F4(k) in

the double cover F̃4(k) described in Section 2.4 where GL2(k) ⊂ F4(k) denotes the subgroup
generated by the subgroup isomorphic to SL2(k) associated to the simple root α1 and the
coroot associated to the simple root α2.

Remark 4.3.2.1. In the literature (for example, [KP84]), one often finds this cover

described in terms of the inverse image in S̃L3(k) of the (2, 1)-Levi subgroup. We opt for the
inclusion into F4 as this better illustrates our interest in this covering group. In any case,
we have

G̃L
(1)

2 (k) ⊂ S̃L3(k) ⊂ F̃4(k),

where the inclusion SL3 ⊂ F4 is the one discussed in Section 2.8.

Let

(16) G∗ := {g ∈ G̃L
(1)

2 (k) : π(1)(g) ∈ GL2(k) has determinant a square in k×}.

As is easily seen, this is the subgroup of G̃L
(1)

2 (k) generated by S̃L2(k) and h̃α2(t
2), t ∈ k×.

Lemma 4.3.2.2. The group G∗ is generated by S̃L2(k) and h̃α2(t
2) subject only to the

relations defining G̃L2(k), restricted to the h̃α2(t
2).

Proof. Let temporarily G∗1 be the group described in the statement of the lemma. Then
one has a tautological surjection G∗1 → G∗. Now G∗1 maps to GL2(k), with kernel at most
µ2(k). Now suppose ε is in the kernel of G∗1 → G∗. Then ε ∈ µ2(k). But the image of µ2(k)
in G∗ has size two, so ε = 1. �

47



Fix a character χ of k×, with χ(−1) = 1. Let S+(k) be the Schwartz space of even

functions. We then have the genuine representation ω+
ψ of S̃L2(k) on S+(k). Following

[GPS80], one can extend the action to an action of G∗ on S+(k) by letting

h̃α2(a
2)φ(x) = χ(a)|a|−1/2φ(a−1x).

Proposition 4.3.2.3. The above action gives a well-defined representation of G∗ on
S+(k). We denote the resulting representation as ωψ,χ.

Proof. This is a direct check which we omit. �

In [Gel76] and [GPS80], a different double cover of GL2(k) is defined, which we now
recall. For y ∈ k×, define

v(y, s) =

{
1 : if c 6= 0,

(y, d)2 : otherwise,

where s = ( a bc d ). Define sy = diag(1, y)−1s diag(1, y). Now, for s = (s, ζ) ∈ S̃L
′
2(k) (defined

as in (15)), let sy = (sy, v(y, s)ζ). It is then proved that this gives an action of k× on S̃L
′
2(k)

and one defines G̃L
(0)

2 (k) to be the semidirect product S̃L
′
2(k) o k×.

We now compare the double cover G̃L
(0)

2 (k) and our G̃L
(1)

2 (k). To do this, let G(0) be a

group defined as follows. As a set, it is G̃L
(1)

2 (k). The multiplication in G(0) is defined as

g ∗ h = g · h(det(g), det(h))2,

where here g · h is the product in G̃L
(1)

2 (k).

Proposition 4.3.2.4. The group G(0) is isomorphic to G̃L
(0)

2 (k).

To prove the proposition, we require a few lemmas. Let, temporarily, G
(0)
1 be the group

generated by S̃L2(k) and h̃α2(t) for t ∈ k×, subject to the relations (1), (2), and

(3) h̃α2(s)h̃α2(t) = h̃α2(st).

Lemma 4.3.2.5. The map G
(0)
1 → G(0) that is the identity on generators is a well-defined

isomorphism.

Proof. It is clear that the map is a well-defined homomorphism, because the relations

satisfied in G
(0)
1 are again satisfied in G(0). Moreover, it is clear that the map is surjective,

and covers the identity map on the linear group GL2(k). By another Bruhat decomposition

argument, the kernel of G
(0)
1 → GL2(k) is at most µ2(k). It follows that the kernel is exactly

µ2(k) and G
(0)
1 → G(0) is an isomorphism. �

Lemma 4.3.2.6. Fix t ∈ k×. Define a map φt : S̃L2(k)→ S̃L2(k) on generators as ζ 7→ ζ,
xα1(u) 7→ xα1(t

−1u), x−α1(u) 7→ x−α1(tu). Then this map is a well-defined isomorphism.

Proof. One checks that the relations in the first copy of S̃L2(k) are satisfied in the
second copy. Thus the map is a well-defined surjection. Replacing t by t−1 gives a well-
defined inverse. Thus, φt is an isomorphism. �
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Lemma 4.3.2.7. The map S̃L2(k) oφt 〈h̃α2(t)〉 → G
(0)
1 defined for h ∈ S̃L2(k) as

(h, h̃α2(t)) 7−→ hh̃α2(t)

is a well-defined isomorphism.

Proof. Checking that it is well defined amounts to the relation that h̃α2(t1)h2h̃α2(t1)−1 =

φt1(h2) in S̃L2(k), which is clear.

The inverse map is G
(0)
1 → S̃L2(k) oφt 〈h̃α2(t)〉 given by the obvious map on generators.

The relations defining G
(0)
1 are again satisfied in the semi-direct product, so the map is

well-defined. It is clear that these maps are inverses to each other, giving the lemma. �

Proof of Proposition 4.3.2.4. Given the previous lemmas, we simply must check

that the semi-direct product defining G̃L
(0)

2 (k) is the same as the one given by φt, and one

must map our S̃L2(k) to S̃L
′
2(k). For this latter task, one checks that ( 1

c 1 ) 7→ (( 1
c 1 ) , 1) is

a splitting to S̃L
′
2(k). (Use the identity on Hilbert symbols (a, b)2(−ab, a + b)2 = 1.) This

splitting pins down the isomorphism S̃L2(k)→ S̃L
′
2(k). One finds that w̃α(t) 7→ (

(
t

−t−1

)
, 1)

and that h̃α1(t) 7→ (diag(t, t−1), (t, t)2). We omit the rest of the proof. �

Note that this shows that the subgroup G∗ ⊂ G̃L
(1)

2 (k) naturally occurs as a subgroup of

G̃L
(0)

2 (k), at least once we fix the above isomorphism G(0) ∼= G̃L
(0)

2 (k).

4.3.3. The Weil representation for GL2. The Weil representation of G̃L
(1)

2 (k) is
defined as

(17) Ω
(1)
ψ,χ := Ind

G̃L
(1)

2 (k)
G∗ (ωψ,χ).

In order to use results of [GPS80], we will need to compare Ω
(1)
ψ,χ with the Weil representation

studied in loc. cit., which is defined as

Ω
(0)
ψ,χ := Ind

G̃L
(0)

2 (k)
G∗ (ωψ,χ) ' IndG

(0)

G∗ (ωψ,χ).

To compare these representations, suppose V (1) is a representation of G̃L
(1)

2 (k). Define
a representation V (0) of G(0) by letting V (0) = V (1) as vector spaces, with action g ∗ v =
γ(det(g)q)

γ(q)
gv. Here γ(q) is as in (14).

Proposition 4.3.3.1. Suppose S is a representation of G∗, V (1) = Ind
G̃L

(1)

2 (k)
G∗ (S), V (0)

is as above, and let V ′ = IndG
(0)

G∗ (S). As representations of G̃L
(0)

2 (k), V (0) is isomorphic to
V ′ via the map

f(g) 7→ γ(det(g)q)

γ(q)
f(g).

In particular, the map (
Ω

(1)
ψ,χ

)(0)

−→ Ω
(0)
ψ,χ

given by f(g) 7→ γ(det(g)q)
γ(q)

f(g) is an isomorphism.

Proof. This is a simple check. �
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Remark 4.3.3.2. As remarked in [GPS80], the representation Ω
(1)
ψ,χ is independent of ψ.

This implies the same for Ω
(0)
ψ,χ. In any case, this fact could have been derived in the same

way as loc. cite. We retain the notation above simply to keep track of our (fixed) choice of
ψ, such as our analysis of various twisted Jacquet functors related to these representations.

We may now derive certain properties of Ω
(1)
ψ,χ from the corresponding results of Gelbart–

Piatetski-Shapiro [GPS80]. Let temporarily U(k) = {xα1(t) : t ∈ k} denote the unipotent
radical of the upper triangular Borel subgroup of GL2(k). This subgroup splits uniquely into

both G̃L
(1)

2 (k) and G̃L
(0)

2 (k), so let U(k) also denote the image under the splitting. If V is a
representation of either double cover, and t ∈ k×, a linear functional L : V → C is said to
be a (U, ψt)-functional if L(xα(u)v) = ψ(tu)L(v) for all u ∈ k and v ∈ V .

Proposition 4.3.3.3. The space of (U, ψt)-functionals on Ω
(1)
ψ,χ is one-dimensional. A

basis of this space of functionals is given by

f ∈ Ω
(1)
ψ,χ 7→ f(hα2(t

−1))(1).

Proof. It is immediately checked that the map f 7→ f(hα2(t
−1))(1) is a non-zero (U, ψt)-

functional. Thus, the key statement is the multiplicity-one claim. For the representation

Ω
(0)
ψ,χ, this is due to Gelbart–Piatetski-Shapiro [GPS80]. Comparing Ω

(1)
ψ,χ with Ω

(0)
ψ,χ using

Proposition 4.3.3.1, we see that

HomU(Ω
(1)
ψ,χ, ψt) = HomU(Ω

(0)
ψ,χ, ψt);

the multiplicity one for Ω
(1)
ψ,χ follows. �

We will also require some results on invariant vectors of Ω
(1)
ψ,χ. To state the first result,

let k = Q2 and let Γ1,GL2(4) be the subgroup of GL2(k) generated by xα(u), x−α(4u),
hα1(t), hα2(t) with u ∈ Z2 and t ∈ 1 + 4Z2. Using the generators and relations, an easy

analogue of Theorem 2.5.2.1 implies that Γ1,GL2(4) splits the cover G̃L
(1)

2 (Q2); we set Γ∗1,GL2
(4)

for the image of the splitting. Similarly, we denote by Γ∗1,SL2
(4) the subgroup of S̃L2(Q2)

generated by xα(u), x−α(4u), hα1(t) with u ∈ Z2 and t ∈ 1 + 4Z2.

Corollary 4.3.3.4. Let Lt denote the non-zero (U, ψt)-functional given in the statement

of Proposition 4.3.3.3. If t = 1 or t = −1, there is a Γ∗1,GL2
(4)-invariant vector ft ∈ Ω

(1)
ψ,χ so

that Lt(ft) = 1. In particular, if t = 1 or t = −1 and a (U, ψt)-functional L on Ω
(1)
ψ,χ vanishes

on the Γ∗1,GL2
(4)-invariant vectors, then L = 0.

Proof. Let φ0 ∈ S+(Q2) be the characteristic function of Z2. Define f1 ∈ Ω
(1)
ψ,χ via

f1(1) = φ0, f1(hα2(5)) = φ0 and if g /∈ G∗ ∪G∗hα2(5) then f1(g) = 0. Define f−1 ∈ Ω
(1)
ψ,χ via

f−1(hα2(−1)) = φ0, f−1(hα2(−5)) = φ0, and if g /∈ G∗hα2(−1) ∪G∗hα2(−5) then f−1(g) = 0.
By construction, Lt(ft) = 1 for t = 1,−1. One readily verifies that f1 and f−1 are

Γ∗1,GL2
(4)-invariant: For this, one uses that φ0 is Γ∗1,SL2

(4) invariant under the action of ωψ,
and that hα2(5), hα2(−1) normalize Γ∗1,SL2

(4). The corollary follows. �

We have an analogous statement at the odd primes. Let k = Qp with p odd and let

GL∗2(Zp) be the subgroup of G̃L
(1)

2 (k) generated by x±α(u), h̃α2(t) with u ∈ Zp and t ∈ Z×p ;

this is the image of a splitting of G̃L
(1)

2 (Qp) over GL2(Zp).
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Lemma 4.3.3.5. Suppose p is odd. Let φ0 ∈ S+(Qp) be the characteristic function of Zp.

Let {1, µ, p, µp} with µ ∈ Z×p be representatives for Q×p /(Q
×
p )2. Define f0 ∈ Ind

G̃L
(1)

2 (k)
G∗ (S+(Qp))

by f0(1) = φ0, f0(h̃α2(µ)) = φ0, f0(h̃α2(p)) = 0 and f0(h̃α2(pµ)) = 0. Then f0 is GL∗2(Zp)-
invariant.

Proof. This is a relatively direct check, which we omit. �

It is proved in [GPS80] that Ω
(0)
ψ,χ, and thus Ω

(1)
ψ,χ, is irreducible. We will see in Section

4.4 that Ω
(1)
ψ,χ embeds in a certain principal series representation, from which it follows that

the space of GL∗2(Zp)-invariant vectors of Ω
(1)
ψ,χ is at most one-dimensional [GG18, Section

9.2], and thus exactly one-dimensional, spanned by the f0 of Lemma 4.3.3.5. We obtain the
following corollary.

Corollary 4.3.3.6. Suppose t = 1 or t = −1, k = Qp with p odd, and L is (U, ψt)-

functional that is 0 on the unique line of GL∗2(Zp)-invariant vectors of Ω
(1)
ψ,χ. Then L = 0.

Proof. This follows from a similar argument to the p = 2 case. �

4.4. Jacquet functors

For any finite prime p, let Vmin = Πmin,p denote the local component of Πmin at p. Recall
that Q = LUQ denotes the standard maximal parabolic of F4 associated to the simple root
α2. In this subsection, we identify the Jacquet module Vmin,UQ of Vmin with respect to UQ

with the representation Ω
(1)
ψ,χ of G̃L

(1)

2 (Qp) considered in Section 4.3.3. For this to make

sense, we first explicate a map L̃(Qp)→ G̃L
(1)

2 (Qp).
Recall the subgroup SL3(Qp) of F4(Qp) as described before Lemma 2.5.2.3.

Proposition 4.4.0.1. The group SL3(Qp) splits into F̃4(Qp), is normal in L̃(Qp), and
one has

L̃(Qp)/ SL3(Qp) ' G̃L
(1)

2 (Qp).

Proof. We first note that SL3(Qp) is a normal subgroup of L(Qp) such that

L(Qp)/ SL3(Qp) ' GL2(Qp).

That SL3(Qp) splits into F̃4(Qp) is Lemma 2.5.1.3.

To see that this SL3(Qp) is normal, let s denote the splitting of SL3(Qp) into F̃4(Qp).

Because SL3(Qp) is its own derived group, the splitting s is unique. Now, let g′ ∈ L̃(Qp)

with image g ∈ L(Qp). Define sg : SL3(Qp) → F̃4(Qp) as sg(h) = g′s(g−1hg)(g′)−1. Since
SL3(Qp) is normal in L(Qp), sg is another splitting; thus sg = s by uniqueness. This implies
(g′)−1s(h)g′ = s(g−1hg), proving s (SL3(Qp)) is normal.

Finally, we have a map G̃L
(1)

2 (Qp)→ L̃(Qp), because we know that the relations defining

G̃L
(1)

2 (Qp) are satisfied in L̃(Qp). This induces G̃L
(1)

2 (Qp) → L̃(Qp)/ SL3(Qp). The latter

group is a non-split double cover of GL2(Qp), as is G̃L
(1)

2 (Qp). Since the map G̃L
(1)

2 (Qp)→
L̃(Qp)/ SL3(Qp) is defined in terms of generators and relations, it fits into a commutative
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diagram

1 µ2 G̃L
(1)

2 (Qp) GL2(Qp) 1

1 µ2 L̃(Qp)/ SL3(Qp) GL2(Qp) 1,

= =

and is thus an isomorphism. �

Let χexc denote the unique exceptional character of Z(T̃ (Qp)); by an abuse of notation,
we use the same symbol for the extension to T∗(Qp) defined by setting

(18) χexc(hα1(t)) = |t|1/2 γ(q)

γ(tq)

for t ∈ Qp; here γ(q) is defined in (14). We set BL = L ∩ B = TUBL the associated Borel
subgroup of the Levi subgroup L and set BL,∗(Qp) = T∗(Qp)UBL(Qp).

It follows from [LS10, Section 6] that there is an embedding Vmin ↪→ Ind
F̃4(Qp)

B∗(Qp)(δ
1/2
B χ−1

exc)

and thus

(19) Vmin,UQ −→ Ind
Q̃(Qp)

B∗(Qp)(δ
1/2
B χ−1

exc)
∼= Ind

L̃(Qp)

BL,∗(Qp)(δ
1/2
B χ−1

exc).

This latter map sends a function f ∈ Ind
F̃4(Qp)

B∗(Qp)(δ
1/2
B χ−1

exc) to its restriction f |Q̃. It is clear that

this factors through the Jacquet functor Vmin,UQ . It is also clear that the map is non-zero.

Proposition 4.4.0.2. The Jacquet functor Vmin,UQ is irreducible as a representation of

L̃(Qp). Moreover, the representation Ind
L̃(Qp)

BL,∗(Qp)(δ
1/2
B χ−1

exc) has a unique irreducible subrepre-

sentation, which is thus identified with Vmin,UQ under the above morphism.

Proof. To prove the irreducibility of Vmin,UQ , we follow the argument of [BFG03, Theo-

rem 2.2, 2.3]. This relies on the fact that the Jacquet functor of Ind
F̃4(Qp)

B∗(Qp)(δ
1/2
B χexc) associated

to any standard non-minimal parabolic subgroup has no supercuspidal subquotients [BZ77,
Corollary 2.13(b)].

Suppose V1 ⊆ Vmin,UQ is an L̃(Qp)-invariant subspace, and V2 the quotient of Vmin,UQ by

V1, giving the short exact sequence of L̃(Qp)-representations

0 −→ V1 −→ Vmin,UQ −→ V2 −→ 0.

By exactness of the Jacquet functor down to the unipotent radical UBL of the Borel subgroup
of L, we obtain

0 −→ V1,UBL
−→

(
Vmin,UQ

)
UBL

∼= Vmin,UB −→ V2,UBL
−→ 0.

The Jacquet functor Vmin,UB associated to the Borel subgroup of F4 is irreducible [LS10,
Proposition 6.4]. In particular, either V1,UBL

= 0 or V2,UBL
= 0; suppose it is V1,UBL

= 0.

If V1 has no non-zero Jacquet modules, we must have V1 = 0 by [BZ77, Corollary
2.13(b)]. Otherwise, let PL = MLNL ⊂ L be the standard parabolic subgroup that is
minimal among those such that V1,NL 6= 0. By assumption PL 6= BL, so that V1,NL is

a non-zero supercuspidal representation of M̃L(Qp) and also a subquotient of the Jacquet
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module Ind
F̃4(Qp)

B∗(Qp)(δ
1/2
B χexc)NL , which is a contradiction. An argument is identical if we assume

V2,UBL
= 0, completing the proof of the irreducibility of Vmin,UQ .

The proof that Ind
Q̃(Qp)

B∗(Qp)(δ
1/2
B χ−1

exc) has a unique irreducible subrepresentation is exactly

the same as the semisimple case treated in [LS10]. Now recall that one has a non-zero map
(19), giving the final claim. �

Pulling back along the quotient map from Proposition 4.4.0.1, we now analyze the repre-

sentation Ω
(1)
ψ,χ as a representation of L̃(Qp). Define the multiplicative character χ(v) = |v|3/2,

and recall that χ determines an extension of the representation on S+(Qp) from S̃L2(Qp)
to the group G∗; see Proposition 4.3.2.3. Consider the corresponding Weil representation

Ω
(1)
ψ,χ = Ind

G̃L
(1)

2 (Qp)
G∗ (S+(Qp)) of G̃L

(1)

2 (Qp).

Lemma 4.4.0.3. Consider the functional

B : Ω
(1)
ψ,χ −→ C

B(f) = f(1)(0).

Then B(t·f) = (δ
1/2
B χ−1

exc)(t)B(f) for all t ∈ T∗(Qp), where χexc is is the exceptional character
χexc of T∗(Qp) given by (18).

Proof. Using the formulas in Section 4.3.1, one has

B(hα1(t) · f) = |t|1/2γ(tq)

γ(q)
B(f)

and
B(hα2(v

2) · f) = χ(v)|v|−1/2B(f) = |v|B(f).

Moreover, B(hα3(v) · f) = B(hα4(v) · f) = B(f). Now observe that for each simple root

δ
1/2
B (hα(t)) = |t|. The lemma now follows from the definition of χexc. �

Because Ω
(1)
ψ,χ is irreducible [GPS80], Frobenius reciprocity provides an embedding of

L̃(Qp)-representations

Ω
(1)
ψ,χ −→ Ind

L̃(Qp)

BL,∗(Qp)(δ
1/2
B χ−1

exc).

Corollary 4.4.0.4. The Jacquet module Vmin,UQ is isomorphic to Ω
(1)
ψ,χ.

We recall from Remark 4.3.3.2 that the latter representation is independent of ψ, as we
should expect for Vmin,UQ .

4.5. The minimal modular form

We return now to the global setting. Let J = H3(Q) be the symmetric 3×3 matrices with
Q coefficients. Fourier coefficients of modular forms on F4 are parameterized by elements
ω = (a, b, c, d) ∈ WJ(Q) where

WJ(Q) = Q⊕ J ⊕ J∨ ⊕Q = Q⊕ J ⊕ J ⊕Q

as J∨ is identified with J via the trace pairing. In this subsection, we show that we may
choose vf ∈ Πmin,f such that the modular form ΘF4 := θ(vf ) satisfies that it has

(1) UF4(4) level and
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(2) non-zero (0, 0, 0, 1)-Fourier coefficient.

This will rely on the following purely local result. Let p be a finite prime. Denote by K∗p
the compact open subgroup of F̃4(Qp) at p introduced in Section 2.7, so that K∗2 = K ′R(4)
and K∗p = F ∗4 (Zp) for odd p. Let UR = Uα1UQ be the unipotent radical of the parabolic

subgroup R ⊂ F4 associated to the simple roots α1 and α2; it splits canonically into F̃4(Qp).
For t = 1 or t = −1, define a character ψ1,t on UR(Qp) by using the fixed additive character
ψt on the root space Uα1 .

Theorem 4.5.0.1. Let Vp denote the vector space underlying Πmin,p. Suppose L is
(UR, ψ1,t)-functional such that L is 0 on the K∗p -fixed vectors of Vp. Then L = 0. In partic-
ular, the twisted Jacquet functor associated to (UR, ψ1,t) induces a surjection

V
K∗p
p −→ Vp,(U,ψ1,t),

which is an isomorphism for p 6= 2.

Proof. There are two cases: p = 2 and p > 2.

Let us first handle the case p odd. First observe that V
K∗p
p → V

L̃∩K∗p
UQ

is well-defined and

non-zero. Indeed, it is clear that the map is well-defined. To see that it is non-zero, consider
the further map to VUB (recall UB denotes the unipotent radical of the Borel.) Recalling the

embedding of Vp into Ind
F̃4(Qp)

B∗(Qp)(δ
1/2
B χ−1

exc), we may consider the linear functional on Vp given

by composing this map can with the evaluation-at-1 map: this gives a non-zero functional

Vp −→ VUQ −→ VUB −→ C.

The spherical vector in this induced representation is non-zero at t = 1, so that this functional

is non-vanishing on V
K∗p
p . In particular, the composition

(20) V
K∗p
p −→ V

L̃∩K∗p
UQ

−→ V
T̃∩K∗p
UB

is non-zero.

Now observe that both V
K∗p
p and V

L̃∩K∗p
p,UQ

are at most one dimensional [GG18, Section 9.2].

In fact, each is exactly one-dimensional: in the case of Vp, this follows from the intertwining
operator calculations of [LS10]. In the case of Vp,UQ , it now follows from the non-vanishing
of the map (20), and in any case, we constructed a spherical vector in Lemma 4.3.3.5. The
claim of the theorem now follows by Corollary 4.3.3.6 and the isomorphism

Vp,(UR,ψ1,t)
∼=
(
Vp,UQ

)
Uα1 ,ψt

∼=
(

Ω
(1)
ψ,χ

)
Uα1 ,ψt

.

We now discuss the case of p = 2. First observe that K∗2 = K ′R(4) has an Iwahori
factorization with respect to Q = LUQ, as proved in Corollary 2.5.3.2. Now, it follows by

[Cas, Theorem 3.3.3] that V K∗R(4) → V
L̃∩K∗R(4)

UQ
is surjective. In light of Corollary 4.4.0.4, the

claim of the theorem thus follows as above by Corollary 4.3.3.4. �

Remark 4.5.0.2. The p odd case may also be handled in a similar fashion to the p = 2
case by instead considering the subgroup I∗p ⊂ K∗p associated to the Iwahori subgroup. The
only non-trivial step is noting that

V
I∗p
p
∼= V

K∗p
p
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as both are one dimensional. This follows for K∗p as noted above and follows for I∗p as
Vp = Πmin,p corresponds to the trivial representation of the Iwahori–Hecke algebra under the
Shimura correspondence proved in [LS10, Section 9]. We thank Gordan Savin for pointing
this out to us.

Using Theorem 4.5.0.1, we obtain the following corollary, completing the proof of Theo-
rem 3.3.0.1.

Corollary 4.5.0.3. There is a quaternionic modular form ΘF4 of weight 1
2

on F̃4(A)
with UF4(4) level and non-zero (0, 0, 0, 1)-Fourier coefficient.

Proof. Let ω1 := (0, 0, 0, 1) ∈ WJ(Q) and consider the ω1-Fourier coefficient

θ 7−→
∫

[NJ ]

θ(n)ψ−1(〈ω1, n〉)dn,

where θ is a vector in the space of automorphic forms Πmin. By [Gin19, Proposition 3],
this gives a non-zero linear functional Lω1 on Πmin; that is, there are vectors in Πmin with
nonzero ω1-Fourier coefficient. Moreover, such a vector can be chosen to be a quaternionic

modular form (in other words, to lie in the minimal K̃∞-type at the archimedean place)
by the explicit formula for the generalized Whittaker function proved in Theorem 3.2.0.2.
Indeed, a corollary of the proof of the explicit formula is that there is a unique moderate
growth (NJ(R), ψ(〈ω1,−〉))-equivariant functional on Πmin,∞ up to scalar multiple, and these

functionals are nonvanishing on the minimal K̃∞-type in Πmin,∞.
Now consider the linear map on Πmin,f given by vf 7→ Lω1(θ(vf )); see equation (13) for

the notation. By what was just said, this map is non-zero on Πmin,f . Moreover, [Gin19,
Proposition 4] implies that for any θ, we have∫

[NJ ]

θ(n)ψ−1(〈ω1, n〉)dn =

∫
[NS ]

(∫
[NJ ]

θ(nn′)ψ−1(〈ω1, n〉)dn
)
dn′,

where NS denote the unipotent radical of the Siegel parabolic subgroup of HJ = GSp6. But∫
[NS ]

(∫
[NJ ]

θ(nn′)ψ−1(〈ω1, n〉)dn
)
dn′ =

∫
[UR]

θ(u)ψ−1
1,−1(u)du,

where UR is the unipotent radical of the parabolic R from Theorem 4.5.0.1 and ψ1,−1 =∏
v ψ1,−1,v is the global analogue of the character considered locally. By that result, the non-

zero linear map on Πmin,f given by vf 7→ Lω1(θ(vf )) does not vanish on the
∏

pK
∗
p -invariant

vectors. The corollary follows. �
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