Mathematics 103B Practice problems
Exam 1

1. Let \(R = \mathbb{Z}[\sqrt{3}] := \{ a + b\sqrt{3} : a, b \in \mathbb{Z} \} \).
 (a) Prove that \(R \) is a ring.
 (b) Set \(A \subseteq R \) to be \(A = \{ a + b\sqrt{3} : a \in 4\mathbb{Z}, b \in \mathbb{Z} \} \). Is \(A \) an ideal? Be sure to prove your answer.
 (c) Set \(B \subseteq R \) to be \(B = \{ a + b\sqrt{3} : a \in 3\mathbb{Z}, b \in \mathbb{Z} \} \). Is \(B \) an ideal? Be sure to prove your answer.

2. Let \(R = M_2(\mathbb{Z}) \) and \(x = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \). Is \(x \) a unit of \(R \)? Be sure to prove your answer. **Hint:** Consider the determinant of \(x \).

3. Let \(R = M_2(\mathbb{Z}) \) and \(S = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in R \right\} \). Is \(S \) a subring of \(R \)? Be sure to prove your answer.

4. Suppose \(R = \mathbb{Z}/2\mathbb{Z}[x] \), the polynomials in \(x \) with coefficients in \(\mathbb{Z}/2\mathbb{Z} \). Prove or disprove:
 \((x + x^3 + x^5)^8 = x^8 + x^{24} + x^{40} \) in \(R \). **Hint:** This is closely related to a homework problem about rings of characteristic \(p \) a prime.

5. Prove that the only unit in \(\mathbb{Z}/2\mathbb{Z}[x] \) is 1.

6. Let \(R \) be the ring of (not necessarily continuous) functions \(f : \mathbb{R} \to \mathbb{R} \) under pointwise addition and multiplication, i.e., \((f + g)(x) = f(x) + g(x)\) and \((fg)(x) = f(x)g(x)\). Recall that an idempotent of the ring \(R \) is an element \(a \in R \) satisfying \(a^2 = a \). Does there exist an idempotent \(f \in R \) with \(f \neq 0 \) and \(f \neq 1 \)? Either prove that the only idempotents of \(R \) are 0 and 1 or give an example of an idempotent \(f \in R \) with \(f \neq 0, 1 \).

7. Is \(\mathbb{Z}/2\mathbb{Z}[x]/\langle x^2 + 1 \rangle \) an integral domain?

8. Let \(R = \mathbb{Z}[\sqrt{2}] = \{ a + b\sqrt{2} : a, b \in \mathbb{Z} \} \).
 (a) Prove that \(3 + 2\sqrt{2} \) is a unit in \(R \).
 (b) Prove that the set of units of \(R \) is infinite.
 (c) Prove or disprove: \(R \) is a field.

9. Let \(R = \mathbb{Z}[i] = \{ a + bi : a, b \in \mathbb{Z} \} \) and let \(I = \langle 3 + 2i \rangle \). Prove that the characteristic of \(R/I \) is 13. **Hint:** First prove that \(13 \in I \).

10. Suppose \(R_1 \) is a ring of characteristic 0 and \(R_2 \) is a ring of characteristic \(p \), where \(p > 0 \) is prime. What is the characteristic of the ring \(R_1 \times R_2 \)?