
THE RANKIN-SELBERG METHOD: A USER’S GUIDE

AARON POLLACK

Abstract. We give an introduction to the Rankin-Selberg method. Instead of surveying the the
landscape of Rankin-Selberg integrals, we focus on how one can compute a few of the simplest
examples. We discuss two integrals for the standard L-function on GL2, one integral for the Spin
L-function on PGSp4, and one integral for the standard L-function on Sp4. We describe how to
evaluate these integrals in terms of the “New Way” method of Piatetski-Shapiro and Rallis. We
end by discussing heuristics that inform the search and computation of Rankin-Selberg integrals.

1. Introduction

The goal of this article is to give an introduction to the so-called Rankin-Selberg method.

1.1. The Rankin-Selberg method. The Rankin-Selberg method can loosely be described as
follows: One considers an automorphic cuspidal representation π on a group G, say a Q reductive
group. Let Vπ denote the space of π, as automorphic functions on G(A). Then one considers a
linear algebraic subgroup H of G, possibly equal to G, and an automorphic function E(h, s) on
H that depends on a complex parameter s. The function E(h, s) might be an Eisenstein series
on H; it might be an Eisenstein series on a larger group that contains H; it might be simply an
automorphic character on H. From this data, one can construct the integral

I(ϕ, s) =

∫
H(Q)Z′(A)\H(A)

E(h, s)ϕ(h) dh.

Here:

(1) ϕ is a cusp form in the space Vπ;
(2) Z ′ is the intersection of H and the center of G.

It is often relatively easy to prove that the integral I(ϕ, s) has meromorphic continuation in s, and
possibly a functional equation relating s to r−s for some real number r. Suppose one knows a priori
that the integral I(ϕ, s) does have these analytic properties. Then in vary narrow circumstances, it
turns out that one can sometimes relate the integral I(ϕ, s) with a partial Langlands L-function of π:
I(ϕ, s) ≈ LS(π, r, s). When one can do this, and when one knows that the integral I(•, s) has good
analytic properties in s, one says that the linear functional I(•, s) : Vπ → C is a Rankin-Selberg
integral.

Key to our chosen definition of Rankin-Selberg integral is the idea that one knows a priori that
the integral I(ϕ, s) has good analytic properties in s. One can imagine abstract integrals that yield
L-functions L(π, r, s), but for which one does not know the analytic properties of the integral. For
the purpose of this article, we do not consider such integrals to have the Rankin-Selberg property.

Rankin-Selberg integrals are somewhat mysterious mathematical objects. There are numerous
of them (e.g., a few famous ones are [GPSR87],[CFGK19],[Gar87],[GS15]) but also they are rare
gems. As of this writing, there is no general theory that classifies all the Rankin-Selberg integrals,
or even a classification of which L-functions are attainable via this method.

AP has been supported by the Simons Foundation via Collaboration Grant number 585147 and by the NSF via
grant numbers 2101888 and 2144021.
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1.2. What this article is about. The point of this article is to give an introduction to the
Rankin-Selberg method. We do this by explaining how to compute some of the simplest Rankin-
Selberg integrals “from scratch”. In that sense, our purpose is to give a sort of “user’s guide” to the
Rankin-Selberg method, explaining some techniques in detail so that the reader, if they so choose,
can do their own research on L-functions. In particular, we try to highlight ideas and techniques
that are less accessible in the literature. More specifically, we describe how to evaluate Rankin-
Selberg integrals in terms of the “New Way” method of Piatetski-Shapiro and Rallis [PSR88], see
also [BFG95].

What this article is not is a survey of the Rankin-Selberg method. For that, we urge the reader to
see the surveys of Bump [Bum05, Bum89] and Cogdell [Cog08]. In fact, to get a complete picture,
we recommend reading this article in conjunction with [Bum05, Bum89] and [Cog08].

1.3. Acknowledgements. Parts of this article are to be delivered as lectures at the Graduate
Instructional Workshop at the Research Innovations and Diverse Collaborations conference at the
University of Oregon in Summer 2022. It is a pleasure to thank the organizers of that workshop
for all their hard work.

2. Hecke’s integral

In this section we discuss the standard L-function of level one Hecke eigen cusp forms.

2.1. Hecke’s integral classically. Suppose f is a weight `, level one normalized Hecke eigenform.
Then f(z) =

∑
n≥1 anq

n with q = e2πiz and a1 = 1. The classical L-function of f is defined as

Lclass(f, s) =
∑

n≥1 ann
−s and the completed classical L-function as Λclass(f, s) = ΓC(s)Lclass(f, s)

where ΓC(s) = 2(2π)−sΓ(s).

Theorem 2.1.1 (Hecke). The classical completed L-function has an Euler product, analytic con-
tinuation in s, and functional equation:

(1) Euler product: Lclass(f, s) =
∏
p (1− app−s + p`−1−2s)−1.

(2) Analytic continuation: Originally defined for Re(s) >> 0, the functions Lclass(f, s) and
Λclass(f, s) have analytic continuation to the entire complex plane.

(3) Functional equation: The completed classical L-function satisfies the functional equation

Λclass(f, s) = (−1)`/2Λclass(f, `− s).

Let’s recall the proof of the analytic continuation and functional equation. To do so, consider
the integral

I(f, s) = 2

∫ ∞
0

f(iy)ys
dy

y
.

This will be our first Rankin-Selberg integral. Then, since f(iy) =
∑

n≥1 ane
−2πny, and 2

∫∞
0 e−2πnyys dyy =

ΓC(s)n−s, one has I(f, s) = Λclass(f, s).
To understand the analytic properties of the integral, first observe that because f is a modular

form, f(−1/z) = z`f(z), and thus f(iy−1) = (−1)`/2y`f(iy). Consequently,∫ 1

0
ysf(iy)

dy

y
=

∫ ∞
1

y−sf(iy−1)
dy

y

= (−1)`/2
∫ ∞

1
y`−sf(iy)

dy

y
.

Therefore

I(f, s) = 2

∫ ∞
1

(ys + (−1)`/2y`−s)f(iy)
dy

y
has analytic continuation and functional equation.
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What about the Euler product? This comes from the fact that f was assumed to be a Hecke
eigenform. We will prove the Euler product property below in a not-exactly-standard way.

2.2. Transition to automorphic representations. To prove the Euler product property, and
in fact to define what it means for f to be a Hecke eigenform, it is most natural to transition to
adele groups.

Thus suppose f is a weight `, level one modular form as above. We will define functions ϕ′f :

GL2(R)+ → C and then ϕf : GL2(A)→ C out of f . To do this, first define j : GL2(R)+ × h→ C

as j(g, z) = det(g)−1/2(cz + d) if g =
(
a b
c d

)
. The factor of automorphy j satisfies j(g1g2, z) =

j(g1, g2z)j(g2, z) for all g1, g2 ∈ GL2(R)+ and all z ∈ h.
Now, for g ∈ GL2(R)+, set ϕ′f (g) = j(g, i)−`f(g · i). Note that ϕ′f is left-invariant under

Γ = GL2(Z)+. Indeed, writing z = gi,

ϕ′f (γg) = j(γg, i)−`f(γz) = j(γ, z)`j(g, i)−`j(γ, z)`f(z) = ϕ′f (g).

To define the function ϕf on GL2(A), we will use the following proposition.

Proposition 2.2.1. One has GL2(A) = GL2(Q) GL2(R)+ GL2(Ẑ). Moreover, the natural map

GL2(Z)+\GL2(R)+ → GL2(Q)\GL2(A)/GL2(Ẑ)

is a bijection.

It follows that we may lift ϕ′f to a function ϕf : GL2(Q)\GL2(A) → C that is right invariant

under GL2(Ẑ).
Using ϕf , we can define what it means for f to be a Hecke eigenform. We first define the local

Hecke algebra. Thus set

Hp = {η ∈ C∞c (GL2(Qp)) : η(k1gk2) = η(g)∀k1, k2 ∈ GL2(Zp) and all g ∈ GL2(Qp)}.

Here the condition of being in C∞c (GL2(Qp)) means that f is C-valued, locally constant, and of
compact support.

Suppose now η ∈ Hp and ϕf is as above. Define

η ∗ ϕf (g) =

∫
GL2(Qp)

η(h)ϕf (gh) dh.

This is actually a finite sum.

Definition 2.2.2. One says that f is a Hecke eigenform is η ∗ ϕf = ληϕf for some constant λη,
for all η ∈ Hp and for all p.

Let π be the GL2(A)-representation1 generated by ϕf . Then it is a fact that f is a Hecke
eigenform if and only if π is irreducible.

2.3. Hecke’s integral adelically I. Suppose f is a level one, weight ` Hecke eigenform and π is
the associated automorphic representation. Then L(π, Std, s) = Lclass(f, s+

`−1
2 ) and Λ(π, Std, s) =

Λclass(f, s+ `−1
2 ). If the reader is unfamiliar with the definition of automorhpic L-functions, then

they can take these equalities as definitions. The functional equation for Λclass(f, s) becomes

Λ(π, Std, 1− s) = Λclass(f,
`+ 1

2
− s) = (−1)`/2Λclass(f, `− (

`+ 1

2
− s)) = (−1)`/2Λ(π, Std, s).

1We really mean the GL2(Af )× (gl2, O(2))-module generated by ϕf .
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We can express the classical Hecke integral group theoretically using ϕf . Indeed, consider the
integral

I(ϕf , s) :=

∫
GL1(Q)\GL1(A)

ϕf (( t 1 )) |t|s dt.

Here the absolute value is the adelic one: if t = (tv)v then |t| =
∏
v |tv|v; note that if γ ∈ GL1(Q)

then |γ| = 1 by the product formula.
First, let’s see how this integral reduces to the classical Hecke integral. Indeed, one has that the

natural map R×>0 → GL1(Q)\GL1(A)/GL1(Ẑ) is a bijection. So, integrating on the right over

GL1(Ẑ) in I(ϕf , s)–using that ϕf (g) is right invariant under this subgroup–we obtain an integral

over R×>0. To understand the resulting integrand, we observe that if t ∈ R×>0, then

ϕf (( t 1 )) = j (( t 1 ) , i)−` f(ti) = t`/2f(ti).

Hence

I(ϕf , s) =

∫
R×>0

f(ti)|t|s+`/2 dt

=

∫ ∞
0

f(iy)ys+`/2
dy

y

= Λclassical(f, s+ `/2) = Λ(f, s+
1

2
).

Here we have used that the Haar measure dt on GL1(R) is the measure y−1 dy, where dy denotes
the usual Lebesgue measure on R.

2.4. Unfolding the integral. Our goal is to prove that the global integral I(ϕf , s) is an Euler
product, identified with the L-function of π. In order to do this, we begin by considering the Fourier
expansion of ϕf . We will rewrite the integral I(ϕf , s) in terms of Fourier coefficients of ϕ and an
integral whose domain is GL1(A). This is called “unfolding” the integral.

To get us started, let ψ : Q\A→ C× be the standard additive character. Thus ψ =
∏
v ψv with

ψ∞(x) = e2πix, and if x ∈ Qp with x = x0 +x1, x0 ∈ Zp and x1 = m
pr ,m ∈ Z, then ψp(x) = e−2πix1 .

Recall that the additive characters of Q\A are of the form ψµ(x) := ψ(µx) for µ ∈ Q.
We will now write the Fourier expansion of ϕf adellically. We have

ϕ(g) =
∑
µ∈Q

ϕψµ(g)

where for a character χ of Q\A we write ϕχ(g) =
∫
Q\A χ

−1(x)ϕf (( 1 x
1 ) g) dx.

Define Wϕ(g) = ϕψ(g); this is called the Whittaker coefficient of ϕ.

Lemma 2.4.1. For µ ∈ Q×, one has ϕψµ(g) = Wϕ (( µ 1 ) g).

Proof. This follows from changing variable in the integral:

Wϕ (( µ 1 ) g) =

∫
Q\A

ψ−1(x)ϕ (( 1 x
1 ) ( µ 1 ) g) dx

=

∫
Q\A

ψ−1(x)ϕ
((

µ−1

1

)
( 1 x

1 ) ( µ 1 ) g
)
dx

=

∫
Q\A

ψ−1(µx)ϕ (( 1 x
1 ) g) dx

= ϕψµ(g).

�
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Now, because ϕ is a cusp form, ϕψ0(g) ≡ 0. Thus, by the Lemma, we have the Fourier expansion

ϕ(g) =
∑
µ∈Q×

Wϕ (( µ 1 ) g).

With this Fourier expansion in hand, we can now unfold the integral I(ϕ, s). We obtain

I(ϕ, s) =
∑
µ∈Q×

∫
GL1(Q)\GL1(A)

Wϕ (( µ 1 ) ( t 1 )) |t|s dt

=

∫
GL1(A)

Wϕ (( t 1 )) |t|s dt.

It’s a theorem, which we won’t prove, that the Whittaker function Wϕ is an Euler product. That
is, for every place v, there is a function Wv : GL2(Qv)→ C with the following properties:

(1) If p is finite, Wp(1) = 1;
(2) One has Wϕ(g) =

∏
vWv(gv) for every g ∈ GL2(A), with all but finitely many factors being

equal to 1.

It follows that I(ϕ, s) is an Euler product: I(ϕ, s) =
∏
v Iv(s) with Iv(s) =

∫
GL1(Qv)Wv (( t 1 )) |t|s dt.

2.5. Hecke’s integral adelically II. If we take for granted the fact that the Whittaker function
Wϕ(g) is an Euler product, then we deduce that I(ϕ, s) is an Euler product. We will, in fact, prove
that the global integral I(ϕ, s) is an Euler product without using that the Whittaker function has
this property. The method we will use is often referred to as the “New way method” or “Method
of non-unique models”.

Consider the linear functional on π, Lα : Vπ → C as Lα(ϕ) = ϕα(1). Then

Lα(( 1 r
1 ) · ϕ) = (( 1 r

1 ) · ϕ)α (1)

= ϕα(( 1 r
1 ))

= ψ(αr)ϕα(1)

= ψ(αr)Lα(ϕ).

Note that Wϕ(g) = ϕ1(g) = L1(g · ϕ).
Thinking about the unfolded global integral I(ϕ, s), we will consider local integrals of the form

I(`, s) =

∫
GL1(Qp)

|t|sp`(( t 1 ) v0) dt

where

(1) v0 is a spherical vector in Vp
(2) ` : Vp → C is a linear functional satisfying `(( 1 r

1 ) v) = ψ(r)`(v) for all r ∈ Qp and v ∈ Vp.
After we have considered and evaluated such integrals, we will go back and explain the relevance
to proving that I(ϕ, s) is an Euler product.

2.6. The definition of the L-function. For g ∈ GL2(Qp), let ∆p(g) = char(g ∈ M2(Zp)),
the characteristic function of M2(Zp). Set Tpn ∈ Hp to be the characteristic function of those
matrices in M2(Zp) for which the absolute value of their determinant is equal to |pn|. Then
∆p(g) = T0 + Tp + Tp2 + · · · , and

(1) ∆p(g)|det(g)|s = T0 + Tp|p|s + Tp2 |p|2s + · · · .

Now, consider the integral
∫

GL2(Qp) |det(h)|s∆p(h)h · v0. Because v0 is an eigenvector of the

Hecke operators, this integral is a power series in p−s with coefficients that are Hecke eigenvalues
5



of πp. For now, we define L(πp, s) via the equality

(2)

∫
GL2(Qp)

| det(h)|s∆p(h)h · v0 dh = L(πp, s−
1

2
)v0.

We define L(π, s) =
∏
p L(πp, s) and Λ(π, s) = ΓC(s+ `−1

2 )L(π, s). With these definitions, we will

proceed to sketch the proof that I(ϕf , s) = Λ(π, s+ 1
2).

2.7. The local integrals. From (2), we obtain

(3) L(πp, s−
1

2
)`(v0) =

∫
GL2(Qp)

∆p(g)| det(g)|s`(gv0) dg.

To evaluate this integral, we apply the Iwasawa decomposition. Let N = {( 1 ∗
1 )}, T = {( ∗ ∗ )}

and Kp = GL2(Zp). Then the Iwasawa decomposition says that GL2(Qp) = N(Qp)T (Qp)Kp and
moreover ∫

GL2(Qp)
f(g) dg =

∫
T (Qp)

∫
N(Qp)

∫
Kp

f(ntk)δB(t)−1 dk dn dt

where if t = diag(t1, t2) then δB(t) = |t1/t2|.
We apply this decomposition to the integral (3). We obtain

=

∫
T

∫
N
δ−1
B (t)∆p(nt)|det(t)|s+1`(ntv0) dn dt

=

∫
T
| det(t)|s+1δ−1

B (t)`(tv0)

(∫
Qp

ψ(x)∆p (( 1 x
1 ) t) dx

)
dt.

We now evaluate this inner integral.

Proposition 2.7.1. Suppose t = diag(t1, t2). The inner integral above∫
Qp

ψ(x)∆p (( 1 x
1 ) t) dx = 0

if |t2| 6= 1 and is ∆
((

t1
1

))
if |t2| = 1.

Proof. To see this, note that ∆p (( 1 x
1 ) t) 6= 0 implies t1, t2 ∈ Zp and x ∈ t−1

2 Zp. But if |t2| < 1 the

character ψ is nontrivial on t−1
2 Zp. The claim follows. �

Therefore

L(πp, s+
1

2
)`(v0) =

∫
GL2(Qp)

∆p(g)| det(g)|s+1`(gv0) dg

=

∫
GL1(Qp)

`(( t 1 ) v0)|t|s char(t ∈ Zp) dt.

Now, one has

Lemma 2.7.2. If t ∈ GL1(Qp) and `(( t 1 ) v0) 6= 0, then t ∈ Zp.

From the lemma we deduce

Proposition 2.7.3. One has∫
GL1(Qp)

`(( t 1 ) v0)|t|s dt = L(πp, s+
1

2
)`(v0).

Proof of Lemma 2.7.2. Because v0 is right invariant under GL2(Zp) one has for all x ∈ Zp

`(( t 1 ) v0) = `(( t 1 ) ( 1 x
1 ) v0) = ψ(tx)`(( t 1 ) v0).

If `(( t 1 ) v0) 6= 0 then ψ(tx) = 1 for all x ∈ Zp, from which it follows that t ∈ Zp. �
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2.8. Hecke’s integral adelically III. For a finite set Ω of places, define

I(Ω, ϕ, s) =

∫
GL1(AΩ)

|t|sL1(( t 1 )ϕ) dt.

Lemma 2.8.1. One has I({∞}, ϕ, s) = 1
2ΓC(s+ `/2)af (1)

Proof. If g ∈ GL2(R), we have

ϕ1(g) =

∫
Q\A

ψ−1(x)ϕ (( 1 x
1 ) g) dx =

∫
Z\R

e−2πixϕ (( 1 x
1 ) g) dx.

Now if g = ( t 1 ) with t > 0 then

ϕ (( 1 x
1 ) g) = j (( t x1 ) , i)−` f(x+ ti) = t`/2f(x+ ti).

Thus ϕ1(g) = af (1)t`/2e−2πt from the usual Fourier expansion of f . If t < 0 one can prove that
W∞ (( t 1 )) = 0. Consequently,

I({∞}, ϕ, s) = af (1)

∫
R×>0

ts+`/2e−2πt dt = af (1)(2π)−(s+`/2)Γ(s+ `/2) =
af (1)

2
ΓC(s+ `/2).

�

Proposition 2.8.2. One has I(Ω ∪ {p}, ϕ, s) = L(πp, s+ 1
2)I(Ω, ϕ, s).

Proof. Set Here `tΩ(v) = L1(diag(tΩ, 1)v). Then

I(Ω ∪ {p}, ϕ, s) =

∫
GL1(AΩ)

|tΩ|s
∫

GL1(Qp)
|tp|sL1(diag(tΩ, 1) diag(tp, 1)ϕ) dtp dtΩ

=

∫
GL1(AΩ)

|tΩ|s
∫

GL1(Qp)
|tp|s`tΩ(diag(tp, 1)v0) dtp dtΩ

= L(πp, s+
1

2
)

∫
GL1(AΩ)

|tΩ|s`tΩ(v0) dtΩ

= L(πp, s+
1

2
)I(Ω, ϕ, s).

�

Combining the previous results with the fact that, by definition, I(ϕ, s) = limΩ I(Ω, ϕ, s) we

obtain I(ϕ, s) =
af (1)

2 Λ(π, s+ 1
2).

2.9. Summary of automorphic L-functions. We now go back and summarize the definition of
Langlands L-functions. Thus suppose G is a reductive algebraic Q-group, that we assume is split for
simplicity. Let π ⊆ A0(G) be a cuspidal automorphic representation. Then π = ⊗′πv is a restricted
tensor product of representations πv of G(Qv). The first fact to know is that πp is unramified

for almost every p. Here unramified means that V
Kp
p 6= 0 for Kp a hyperspecial maximal compact

subgroup of G(Qp). It is another fact that, in this case, V
Kp
p is necessarily one-dimensional.

Associated to πp there is a conjugacy class cp in Ĝ(C), the complex dual group ofG. Automorphic

L-functions are associated to finite dimensional algebraic representations r : Ĝ(C) → GLN (C).
Namely, for such an r, one defines

LS(π, r, s) :=
∏
p/∈S

L(πp, r, s) :=
∏
p/∈S

det(1N − r(cp)p−s)−1

7



where S is a finite set of places outside of which πp is unramified. The Euler product defining
LS(π, r, s) is known to converge for Re(s) >> 0. It is expected to have meromorphic continuation
in s.

Suppose πp is unramified and v0 a spherical vector for πp. It is a fact, following from the Satake
isomorphism, that there exists a unique function ∆r

s(g) ∈ C∞(Kp\G(Qp)/Kp) such that

L(πp, r, s)v0 =

∫
G(Qp)

∆r
s(g)g · v0 dg.

Above, we used an explicit ∆r
s for G = GL2 and r = Std to help us evaluate Hecke’s integral.

3. The standard L-function of modular forms

In this section, we present another integral that realizes the standard L-function of modular forms
on GL2. The earliest reference I am aware of for this integral is [GKZ87, Chapter III.3]. One
can think of PGL2 as SO(3), and then the standard L-function for cusp forms on PGL2 becomes
the standard L-function on SO(3). From this point of view, the integral we discuss in this section
generalizes from SO(3) to SO(n), n ≥ 3 [MS94]. See also [Pol18] for some context.

3.1. The global integral. We begin by defining the global integral that will represent the standard
L-function. Let K be a quadratic field extension of Q, and H the algebraic Q-group for which
H(Q) is the subgroup of GL2(K) for which the determinant is in Q×. We will define an Eisenstein
series E(h,Φ, s) on H(A) and consider the global integral

I(ϕ,Φ, s) =

∫
GL2(Q)Z(A)\GL2(A)

E(g,Φ, s)ϕ(g) dg

where π is a cuspidal automorphic representation of GL2(A) and ϕ a cusp form in the space of π.
To define the Eisenstein series, let Φ be a Schwartz-Bruhat function on K2 ⊗Q A = A2

K . Set

f(h,Φ, s) = | det(h)|sQ
∫

GL1(AK)
|t|sKΦ(t(0, 1)h) dt.

Then f(
(
a b
d

)
h,Φ, s) = |a/d|s/2K f(h,Φ, s). Letting BH be the upper-triangular Borel of H, we set

E(h,Φ, s) =
∑

γ∈BH(Q)\H(Q)

f(γh,Φ, s).

This Eisenstein series has meromorphic continuation in s and satisfies a functional equation relating
s to 2− s.

We can now unfold the global integral. We begin with the following lemma.

Lemma 3.1.1. Suppose K = Q(
√
D). The double coset BH(Q)\H(Q)/GL2(Q) has two elements

{1, γ0}. The element γ0 can be chosen so that (0, 1)γ0 = (
√
D, 1).

Proof. One can identify BH(Q)\H(Q) with the K-lines in K2 via γ 7→ (0, 1)γ. Writing a nonzero

vector v ∈ K2 as v1 +
√
Dv2 with v1, v2 ∈ Q2, we see that there are two possibilities: either v1, v2

are linearly dependent, or v1, v2 are a basis of Q2. In the first case, one can use the action of
GL2(Q) to move the line Kv to K(0, 1). In the second case, one can use the action of GL2(Q) to

move the line Kv to K((0, 1) +
√
D(1, 0)). The lemma follows. �

Let RK ' ResK/Q(GL1) be the subgroup of GL2 satisfying (
√
D, 1)r ∈ K×(

√
D, 1). In matrices,

RK consists of the
(
d b
Db d

)
.

Using the lemma, one obtains

I(ϕ,Φ, s) =

∫
B(Q)Z(A)\GL2(A)

f(g,Φ, s)ϕ(g) dg +

∫
RK(Q)Z(A)\GL2(A)

f(γ0g,Φ, s)ϕ(g) dg.
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The first integral vanishes by the cuspidality of ϕ.
Set

ϕK(g) =

∫
RK(Q)Z(A)\RK(A)

ϕ(rg) dr.

The second integral is equal to∫
RK(Q)Z(A)\GL2(A)

f(γ0g,Φ, s)ϕ(g) dg =

∫
RK(A)\GL2(A)

f(γ0g,Φ, s)ϕK(g) dg

=

∫
GL2(A)

| det(g)|sΦ((
√
D, 1)g)ϕK(g) dg.

Thus we have proved

Proposition 3.1.2. The integral I(ϕ,Φ, s) is equal to
∫

GL2(A) | det(g)|sΦ((
√
D, 1)g)ϕK(g) dg.

3.2. Local calculation. By the method of non-unique models, to evaluate the integral I(ϕ,Φ, s),
it suffices to consider integrals of the form

I(`,Φp, s) =

∫
GL2(Qp)

| det(g)|sΦp((
√
D, 1)g)`(gv0) dg

where ` is a linear functional on Vp. We will do this when p is finite and Φp is the character-

istic function Zp[
√
D]2. Under these assumptions, Φp((

√
D, 1)g) = char(g ∈ M2(Zp)) = ∆p(g).

Consequently,

I(`,Φp, s) =

∫
GL2(Qp)

| det(g)|s∆p(g)`(gv0) dg = L(πp, Std, s−
1

2
)`(v0).

Therefore, as in the previous section, we obtain the following theorem.

Theorem 3.2.1. Suppose S is a finite set of places of Q containing ∞ and such that if p /∈ S then
πp is unramified, ϕ is spherical at p, and Φp is the characteristic function of Zp[

√
D]2. Then

I(ϕ,Φ, s) = LS(π, Std, s− 1

2
)

∫
GL2(AS)

|det(g)|sΦS((
√
D, 1)g)φK(g) dg.

We leave the analysis of the integral
∫

GL2(AS) | det(g)|sΦS((
√
D, 1)g)φK(g) dg to the energetic

reader.

4. Andrianov’s integral

In this section, we sketch an evaluation of Andrianov’s integral [And74] for the Spin L-function
of cusp forms on PGSp4. One can think of PGSp4 as SO(5), and the Spin L-function on PGSp4 as
the standard L-function on SO(5). From this point of view, the integral we discuss in this section
generalizes to produce the standard L-function on SO(n) for n ≥ 4 [Sug85]. Again, one can see
[Pol18] for some context.

4.1. Siegel modular forms. Siegel modular forms are one of the generalizations of classical mod-
ular forms. To define them, we first recall the symplectic similitude group. It is defined as

GSp2n =

{
(g, ν(g)) ∈ GL2n×GL1 : g

(
0n 1n
−1n 0n

)
gt = ν(g)

(
0n 1n
−1n 0n

)}
.

Note that GSp2 = GL2 because if g ∈ GL2 then g
(

0 1
−1 0

)
gt = det(g)

(
0 1
−1 0

)
.

Another way of thinking of the group GSp2n is as the group preserving a symplectic form on vector
space, up to scaling. In more detail, if R is a ring, set W2n(R) = R2n with basis e1, . . . , en, f1, . . . , fn.
Define a bilinear form 〈 , 〉 : W2n(R)→ R via
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(1) 〈w, v〉 = −〈v, w〉
(2) 〈ei, ej〉 = 〈fi, fj〉 = 0
(3) 〈ei, fj〉 = δij .

Then

GSp2n(R) = {(g, ν(g)) ∈ GL2n(R)×GL1(R) : 〈gv, gw〉 = ν(g)〈v, w〉∀v, w ∈W2n(R)} .
Define hn = {Z ∈Mn(C) : Zt = Z and Im(Z) > 0} where the second condition means that the

imaginary part of Z is positive-definite. Thus Z = X + iY with X,Y symmetric and Y positive
definite.

Define GSp2n(R)+ to the subgroup of GSp2n(R) consisting of matrices with ν(g) > 0. Suppose
that g =

(
a b
c d

)
∈ GSp2n(R) in n× n block form. It turns out that if Z ∈ hn then

(1) n× n matrix cZ + d is invertible
(2) the n× n matrix (aZ + b)(cZ + d)−1 is in hn
(3) The map GSp2n(R)+ × hn → hn given by (g, Z) 7→ (aZ + b)(cZ + d)−1 defines a transitive

action.

Set Γ = GSp2n(Z)+ = Sp2n(Z), and ` > 0 is an integer. A Siegel modular form for Γ of
weight ` is a holomorphic function f : hn → C satisfying

(1) f(γZ) = det(cZ + d)`f(Z) for all γ =
(
a b
c d

)
∈ Γ

(2) the Γ-invariant function |det(Y )`/2f(Z)| is of moderate growth, in a suitable sense.

The Siegel modular forms have a Fourier expansion. Note that(
1 X

1

)(
1

−1

)(
1
Xt 1

)
=

(
Xt −X 1

1 0

)
so
(

1 X
1

)
∈ GSp2n if and only if X = Xt. Thus if X ∈Mn(Z) and is symmetric, and if f is a Siegel

modular form, then f(Z +X) = f(Z).
Denote by Sn the n× n symmetric matrices. It follows that

f(Z) =
∑

T∈Sn(Z)∨

af (T )e2πi tr(TZ)

where the Fourier coefficients af (T ) ∈ C and

Sn(Z)∨ = {T ∈ Sn(Q) : tr(TX) ∈ Z∀X ∈ Sn(Z)}

= {T ∈ Sn(Q) : Tii ∈ Z and Tij ∈
1

2
Z}.

Just like in the case of classical holomorphic modular forms, the moderate growth condition
implies that the Fourier expansion has a restricted form. It turns out that the sum is only over the
positive semi-definite matrices T , i.e., af (T ) 6= 0 implies T ≥ 0. The Siegel modular form f is said
to be a cusp form if it satisfies the condition af (T ) 6= 0 implies T > 0 (positive definite), i.e., the
only nonzero Fourier coefficients correspond to positive definite T .

4.2. Definition of eigenforms. Thus suppose f is a Siegel modular form of level Γ = Sp2n(Z)
and weight `. We can associate to f a function ϕf on GSp2n(Q)\GSp2n(A) as follows.

First, for g ∈ GSp2n(R)+ (the subgroup where the similitude is positive) and Z ∈ Hn, set

j(g, Z) = ν(g)−n/2 det(cZ+d), if g =
(
a b
c d

)
. Define ϕ′f : GSp+

2n(R)→ C as ϕ′f (g) = j(g, i)−`f(g ·i).
Then because j is a factor of automorphy, ϕ′f is left-invariant under Γ.

As we did for GL2, we have the following proposition.

Proposition 4.2.1. One has GSp2n(A) = GSp2n(Q) GSp+
2n(R) GSp2n(Ẑ). Moreover, the natural

map

Γ\GSp+
2n(R)→ GSp2n(Q)\GSp2n(A)/GSp2n(Ẑ)
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is a bijection.

We denote by ϕf the function on GSp2n(A) associated to ϕ′f via this proposition. By its

definition, ϕf is right invariant under GSp2n(Zp) for every prime p. We can now define Hecke
eigenforms.

Let

Hp = {η ∈ C∞c (GSp2n(Qp)) : η(k1gk2) = η(g)∀k1, k2 ∈ GSp2n(Zp) and all g ∈ GSp2n(Qp)}.
We define η ∗ ϕ(g) =

∫
GSp2n(Qp) η(h)ϕ(gh) dh.

Definition 4.2.2. The Siegel modular form f is said to be a Hecke eigneform if η ∗ ϕf = ληϕ for
some λη ∈ C for all η ∈ Hp and all p.

4.3. The definition of the L-function. Recall that the dual group of PGSp2n is Spin2n+1(C),
which has a 2n-dimensional Spin L-function. Thus one can consider the Langlands L-functions
L(π, Spin, s) of Siegel modular eigenforms.

The following is a very special case of the conjectural Langlands program.

Conjecture 4.3.1. Suppose f is a level one cuspidal Siegel modular Hecke eigenform for Sp2n(Z),
and π is it associated cuspidal automorphic representation. Then the L-function L(π, Spin, s) can
be completed to Λ(π, Spin, s) which has meromorphic continuation with finitely many poles and
satisfies a functional equation Λ(π, Spin, s) = ±Λ(π, Spin, 1− s).

The case n = 2 of this conjecture is due to Andrianov, and we will sketch a proof of this case:
Define the completed L-function of f is Λ(π, Spin, s) = ΓC(s+ 1

2)ΓC(s+ `− 3
2)L(π, Spin, s).

Theorem 4.3.2 (Andrianov). Suppose f is a cuspidal Siegel eigenform. Then the completed L-
function satisfies the functional equation Λ(π, Spin, s) = Λ(π, Spin, 1−s), has analytic continuation
and finitely many poles.

The case n = 3 of Conjecture 4.3.1 was proved in [Pol17]. The cases n > 3 are open.

We will now state a result concerning ∆Spin
s on GSp4(Qp), which we will need in our proof of

Theorem 4.3.2. So, for g ∈ GSp4(Qp), define ∆Spin,p(g) = char(g ∈M4(Zp)). Note that ∆Spin,p(g)
is bi-invariant under GSp4(Zp).

One has

Proposition 4.3.3. Suppose πp is an unramified irreducible admissible representation of PGSp4(Qp),
and v0 is a spherical vector for πp. Then∫

GSp4(Qp)
∆Spin,p(g)|ν(g)|sg · v0 dg =

Lp(πp, s− 3
2)

ζp(2s− 2)
v0.

Here ζp(s) = (1− p−s)−1. Also, we are using that πp has trivial central character. For a general
central character ωp, the denominator in this formula should be L(ωp, 2s−2) = (1−ωp(p)|p|2s−2)−1.

4.4. A subgroup of GSp4. Before sketching the proof of the theorem, we need a certain subgroup
H of GSp4. In fact, our group H will be the same group that appeared in the previous section, but
we review some aspects of this group and prove that it can be embedded in GSp4.

Fix a quadratic imaginary field K. Let 〈 , 〉K be the usual K-valued symplectic form on K2, i.e.,

〈(a, b), (c, d)〉K = ad − bc. Now, supposing that K = Q(
√
D) define 〈 , 〉 = trK/Q ◦

√
D
−1〈 , 〉K on

K2 = W so that 〈(a, b), (c, d)〉 = trK/Q( 1√
D

(ad− bc)).
We define an algebraic group H over Q as follows: For a Q-algebra R, one has H(R) = {(g, λ) ∈

GL2(K ⊗ R) × GL1(R) : det(g) = λ}. In other words, H(Q) is the subgroup of GL2(K) with
determinant in Q× ⊆ K×.
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Note that H ⊆ GSp(W, 〈 , 〉) = GSp4 through its action on K2 = W . Indeed, say at the level of
Q-points, if h ∈ H(Q) and v, w ∈ K2, then

〈hv, hw〉 = trK/Q(
1

2
√
D
〈hv, hw〉K) = trK/Q((2

√
D)−1 det(h)〈v, w〉K) = λ〈v, w〉

because det(h) = λ passes through the trace because it is in the ground field.

4.5. The global integral. Suppose π is a cuspidal automorphic representation of PGSp4 and ϕ
is a cusp form in the space of π. The integral we will consider is

I(ϕ,Φ, s) =

∫
H(Q)Z(A)\H(A)

E(h,Φ, s)ϕ(h) dh.

We will sketch a proof that this integral represents the completed L-function Λ(π, Spin, s − 1
2).

Then, from the fact that E(h,Φ, s) has finitely many poles and satisfies a functional equation
relating s to 2 − s, we obtain that Λ(π, Spin, s) has finitely many poles and satisfies a functional
equation relating s to 1− s.

First, we unfold this integral. We have

I(ϕ,Φ, s) =

∫
BH(Q)Z(A)\H(A)

f(h,Φ, s)ϕ(h) dh

=

∫
TH(Q)NH(A)Z(A)\H(A)

f(h,Φ, s)ϕ0,K(h) dh

where

ϕ0,K(g) =

∫
NH(Q)\NH(A)

ϕ(ng) dn.

To further unfold, we will now produce a Fourier expansion of ϕ0,K . For simplicity, assume OK =

Z[
√
D]. Then e1 = (1, 0), e2 = (

√
D, 0), f1 = (0,

√
D), f2 = (0, 1) is a symplectic basis of W , and

we obtain an embedding of H into GSp4 in terms of matrices. Specifically, if nH(x) = ( 1 x
0 1 ) ∈ H

with x ∈ K, then the image of nH(x) in GSp4 is nG(S(x)) =
(

1 S(x)
0 1

)
where if x = u+ v

√
D then

S(x) = ( v u
u Dv ).

For T ∈ S = S2(Q2), define

ϕT (g) =

∫
S(Q)\S(A)

ψ(tr(TX))ϕ(nG(X)g) dX.

Set TK =
(−D 0

0 1

)
. Then one obtains easily that

ϕ0,K(g) =
∑
µ∈Q×

ϕµTK (g) =
∑
µ∈Q×

ϕTK (diag(µ, µ, 1, 1)g).

We now unfold further. Set T ′H = {diag(z, z) : z ∈ K×}. Then

I(ϕ,Φ, s) =

∫
TH(Q)NH(A)Z(A)\H(A)

f(h,Φ, s)ϕ0,K(h) dh

=

∫
T ′H(Q)NH(A)Z(A)\H(A)

f(h,Φ, s)ϕTK (h) dh

=

∫
T ′H(A)NH(A)\H(A)

f(h,Φ, s)ϕK(h) dh

where

ϕK(g) =

∫
T ′H(Q)Z(A)\T ′H(A)

ϕTK (rg) dr.
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Plugging in the definition of f(h,Φ, s), we arrive at the following proposition.

Proposition 4.5.1. One has

I(ϕ,Φ, s) =

∫
NH(A)\H(A)

| det(h)|sQϕK(h)Φ((0, 1)h) dh.

Like with the Whittaker function on GL2, the function ϕK(g) on GSp4 is an Euler product,
and thus the global integral I(ϕ,Φ, s) is an Euler product. We will evaluate I(ϕ,Φ, s) in terms of
L-functions without using the result that ϕK is an Euler product, similar to what was done in the
prior two sections.

4.6. The local integral. Suppose πp is unramified, and ` : Vp → C is a linear functional satisfying
`(nG(X)v) = ψ(tr(TKX))`(v) for all X ∈ S(Qp) and all v ∈ Vp. Consider the integral

I(`,Φp, s) =

∫
NH(Qp)\H(Qp)

| det(h)|sΦp((0, 1)h)`(h · v0) dh

where v0 is a spherical vector in Vp. The goal of this section is to evaluate this integral. More
precisely, our goal is to prove the following theorem.

Theorem 4.6.1. Suppose Φp is the characteristic function of OK,p. Then I(`,Φ, s) = L(πp, Spin, s−
1
2)`(v0).

We begin by applying the Iwasawa decomposition to obtain

I(`,Φp, s) =

∫
TH(Qp)

δ−1
B (t)|det(t)|s char(t2 ∈ OK,p)`(t · v0) dt

where t = diag(t1, t2).
On the other hand,

L(πp, Spin, s− 1
2)

ζp(2s)
`(v0) =

∫
GSp4(Qp)

∆p(g)|ν(g)|s+1`(gv0) dg

=

∫
M(Qp)

δ−1
P (m)|ν(m)|s+1∆TK (m)`(mv0) dm

where

• M = ( ∗ 0
0 ∗ ) ⊆ GSp4 is the Siegel Levi, so that M ' GL1×GL2

• ∆TK (m) =
∫
S(Qp) ∆(nG(x)m)ψ(tr(TKx)) dx.

The function ∆TK (m) is evaluated in the following proposition.

Proposition 4.6.2. Suppose m = diag(a, d). Then ∆TK (m) = |det(d)|−1 char(a, d, p - d) char(TK ·
d := det(d)d−1TK

td−1 ∈ S(Zp). Moreover, d satisfies this latter condition if and only if diag(a, d) ∈
TH(Qp)M(Zp).

Proof. We indicate some aspects of the proof. First, the conditions char(a, d) are clear. Moreover,
it is easy to see that the integral defining ∆TK (m) vanishes if p|d, so the condition p - d is also clear.
To see that TK · d ∈ S(Zp), we make a change of variables in the integral: x 7→ det(d) td−1xd−1 so
that

∆TK (m) =

∫
S(Qp)

char(a, d, xd)ψ(tr(TKx)) dx = C(d)

∫
S(Qp)

char(a, d,det(d) td−1x)ψ(TK · dx) dx.

For this integral to be nonvanishing, we thus must have TK · d ∈ S(Zp).
13



Now suppose TK · d is integral and p - d. We claim that xd integral implies tr(TKx) ∈ Zp, so
that the integral defining ∆TK (m) is nonzero. Set J =

(
0 1
−1 0

)
. Then

tr(TKx)d = (TKx+ JxTKJ
−1)d

= TK(xd) + JxdTK · ddet(d)−1dtJd−1

= TK(xd) + JxdTK · dJ−1

is integral. Because p - d, tr(TKx) is integral.
We leave the rest of the proof to the energetic reader. See also [PS17, Lemma 4.3]. �

From the proposition, and using the fact that δP (diag(t1, t2)) = |t1/t2|3/2, we have

L(πp, Spin, s−
1

2
)`(v0) = ζp(2s)

∫
TH(Qp)

|t1|s/2−1
K |t2|s/2+1

K char(t1, t2, p - t2)`(tv0) dt.

Theorem 4.6.1 follows without much more work.
Applying Theorem 4.6.1 and the method of non-unique models, we obtain

Corollary 4.6.3. For the global integral I(ϕ,Φ, s) one has the identity

I(ϕ,Φ, s) = LS(π, Spin, s− 1

2
)

∫
NH(AS)\H(AS)

| det(h)|sΦS((0, 1)h)ϕK(h) dh.

Remark 4.6.4. The reader who is paying close attention will observe that we have now indicated
two2 different integrals that represent the standard L-function of cusp forms on SO(n). One integral
involves an Eisenstein series on SO(n− 1) and the other involves an Eisenstein series on SO(n+ 1).
Thus one may ask: Why bother producing both integrals, if they represent the same L-function?
The short answer is that different integral representations can have different applications and tell
you different facts about L-functions. For example, the integral involving SO(n) ⊆ SO(n+1) works
even when the SO(n) is anisotropic, while the integral involving SO(n − 1) ⊆ SO(n) requires the
SO(n) to have Witt rank at least 1. On the other hand, this latter integral can be used to produce
a Dirichlet series for the standard L-function of holomorphic cusp forms on orthogonal groups in
terms of their Fourier coefficients, and when n = 5 can be used to relate poles of the Standard
L-function to periods of the cusp form.

5. The standard L-function on Sp4

In this section, we present a further integral that represents L-functions of Siegel modular forms
on Sp4. It is an integral due to Andrianov [And76, And78] and Andrianov-Kalinin [AK78] for the
Standard L-function on Sp2n, specialized to n = 2. It was reinterpreted by Piatetski-Shapiro and
Rallis [PSR88]. For this integral, we do not show in detail how to evaluate it in terms of L-functions.
Instead, we present it for two reasons:

(1) So that the reader may see a different sort of constructions that can be made to produce
L-functions: The integral of Andrianov involves an integrand with three functions, instead
of two: An Eisenstein series, a cusp form, and a theta function.

(2) So that the reader can see how to use a Rankin-Selberg integral to produce a Dirichlet series
for an L-function, in terms of classical Fourier coefficients.

2In fact, there are even more.
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5.1. Andrianov’s integral. The dual group of Sp2n is SO2n+1(C), which has a standard represen-
tation into GL2n+1(C). If π is a cuspidal automorphic representation on Sp2n, we let L(π, Std, s)
denote its associated standard L-function. The integral of Andrianov for Siegel modular forms on
Sp2n, which was generalized by Piatetski-Shapiro and Rallis to an integral for all cusp forms on
Sp2n, produces this standard L-function. We will explain the integral in the case of Siegel modular
forms.

To explain the integral, let T be a two-by-two half-integral symmetric matrix, and let VT be the
associated two-dimensional positive-definite quadratic space. That is, VT has a basis v1, v2 and a
positive-definite quadratic form on it ( , ) so that

T =
1

2

(
(v1, v1) (v1, v2)
(v2, v1) (v2, v2)

)
.

Out of T , we can create a Siegel modular theta-function ΘT on Sp4. Let W = X ⊕ Y be the
standard Lagrangian decomposition of W , and let Φ be a Schwartz-Bruhat function on (X⊗VT )(A).
In group-theoretic terms, for g ∈ Sp4(A),

ΘT (g) = ΘΦ
T (g) =

∑
ξ∈(X⊗VT )(Q)

ωψ(g)φ(ξ)

where ωψ denotes the Weil representation of Sp4(A) on S(X ⊗ VT (A)). In classical terms, Φ can
be chosen so that ΘT corresponds to a Siegel modular form Θ′T of weight 1 with Fourier expansion

Θ′T (Z) =
∑

u1,u2∈ΛT

eπi tr(((ui,uj))Z)

=
∑

m∈M2(Z)

e2πi tr( tmTmZ)

where ΛT = Zv1 ⊕ ZvT .
We now define an Eisenstein series on Sp4. Let P be the Siegel parabolic of Sp4. Let µ de-

note the character of P (A) given by µ((m ∗
tm−1 )) = det(m), and let χT denote the character of

GL1(Q)\GL1(A) given by χT (r) = (r, disc(VT ))2 = (r,−det(T ))2 where ( , )2 denotes the Hilbert
symbol. We associate an Eisenstein series to the induced representation IndP (A)Sp4(A)((χT ◦
µ)|µ|s). That is, we define E(g, f, s) =

∑
γ∈P (Q)\ Sp4(Q) f(γg, s) where f(g, s) ∈ IndP (A)Sp4(A)((χT ◦

µ)|µ|s) so that it satisfies f((m ∗
tm−1 ) g, s) = χT (det(m))| det(m)|sf(g, s).

A normalized Eisenstein series can be defined as E∗(g, s) = ζ(2s − 2)L(χT , s)E(g, s). This
normalized Eisenstein series satisfies a functional equation relating s to 3− s.

Suppose now ϕ is a Siegel modular cusp form on Sp4. A Rankin-Selberg integral can now be
defined as

I(ϕ, s) =

∫
Sp4(Q)\ Sp4(A)

ϕ(g)E∗(g, s)ΘT (g) dg.

To make this integral be nonvanishing for Siegel modular forms of some fixed weight, one must
choose the archimedean part of f(g, s) in a special way, depending upon the weight. The integral
will represent the partial L-function LS(π, Std, s− 1).
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The integral unfolds as

I(ϕ, s)

ζ(2s− 2)L(χT , s)
=

∫
Sp4(Q)\ Sp4(A)

ϕ(g)E(g, s)ΘT (g) dg

=

∫
P (Q)\Sp4(Q)

ϕ(g)f(g, s)ΘT (g) dg

=

∫
NP (Q)\ Sp4(A)

ϕ(g)f(g, s)ω(g)Φ(e1 ⊗ v1 + e2 ⊗ v2) dg

=

∫
NP (A)\Sp4(A)

ϕT (g)f(g, s)ω(g)Φ(e1 ⊗ v1 + e2 ⊗ v2) dg.

One can analyze this integral using the “new way method”. In fact, the method of Piatetski-
Shapiro and Rallis was first used to analyze the generalization of this integral to Sp4n.

5.2. Andrianov’s Dirichlet series. We now explain the relation between the above integrals and
Dirichlet series for the standard L-function of ϕ.

Suppose S is a set of bad places for the above integral, and AS denotes the adeles away from
S. Let V S be the space underlying the Sp4(AS)-representation πS = ⊗′p/∈Sπp and let L : V S → C

be a linear functional satisfying L(
(

1 X
1

)
v) = ψ((tr(TX)))L(v) for all v ∈ V S and X ∈ S2(AS).

Then in the course of analyzing the integral I(ϕ, s) one proves

L(v0)
LS(π, Std, s− 1)

ζS(2s− 2)LS(χT , s)
=

∫
NP (AS)\Sp4(AS)

L(gv0)f(g, s)ω(g)ΦS(e1 ⊗ v1 + e2 ⊗ v2) dg.

Applying the Iwasawa decomposition, this latter integral is equal to∫
GL2(AS)

L(m(g)v0)| det(g)|s−2 char(g ∈M2(ZS)) dg.

Here, for g ∈ GL2, m(g) ∈ Sp4 is m(g) =
(
g
tg−1

)
. Moreover, we have used that δP (m(g)) =

|det(g)|3, f(m(g), s) = χT (det(g))|det(g)|s, and ω(m(g))Φ(e1⊗v1+e2⊗v2) = χT (det(g))| det(g)| char(g ∈
M2(ZS)).

To see the relation between these integrals and Dirichlet series, suppose that L is the functional
L(v) = α(v ⊗ vS)T (1), where:

(1) vS ∈ πS = ⊗v∈Sπv is a fixed vector
(2) α : π = πS ⊗ πS → A0(Sp4) is the automorphic embedding
(3) α(v ⊗ vS)T (1) is the value at 1 of the T th Fourier coefficient of α(v ⊗ vS).

Let’s assume furthermore that ϕ = α(v0⊗vS) is the automorphic form corresponding to a level one
Siegel modular form f(Z) =

∑
R>0 a(R)qR of weight `. So, we’re assuming that π is unramified at

every finite prime, so that we only have to throw out bad primes coming from where the character
χT is ramified.

Now, the integral above is equal to∑
g∈GL2(AS)/GL2(ẐS)

ϕT (m(g))| det(g)|s−2 char(g ∈M2(ẐS)).

This sum can be rewritten in terms of the usual Fourier coefficients of ϕ. To do this, observe

that GL2(AS) ⊆ GL2(Af ) = GL2(Q) GL2(Ẑ), so that every gS ∈ GL2(AS) can be written as

gS = gQkgR with gQ ∈ GL2(Q), k ∈ GL2(Ẑ) and gR ∈ GL2(R). Set M2(Z)S to be subset of
16



M2(Z) consisting of elements whose determinant is nonzero and only divisible by primes away from
S. Then the sum above becomes∑

gQ∈M2(Z)S/GL2(Z)

ϕT (m(gQkgR))|det(gQ)|2−s.

Now ϕR(m(gR)) = det(gR)`aRe
−2π tr(RgR

tgR), so that

ϕT (m(gQkgR)) = ϕT (m(gQgR))

= ϕT ·gQ(m(gR))

= a(T · gQ)| det(gQ)|−`e−2π tr(T )

Putting everything together, we obtain:

a(T )
LS(π, Std, s)

ζS(2s)LS(χT , s+ 1)
=

∑
g∈M2(Z)S/GL2(Z)

a( tgTg)

|det(g)|s+`−1
.

This is a Dirichlet series for the partial standard L-function of a level one Siegel modular form on
Sp4 in terms of its Fourier coefficients.

6. Heuristics

Coming up with Rankin-Selberg method integrals is as much of an art as it is a science. There
is not, at present, any explanation for

(1) which L-functions can be represented by Rankin-Selberg integrals or
(2) whether or nor a given integral represents an L-function.

That being said, there are still some heuristics employed by practitioners that make it easier to
come up with Rankin-Selberg integrals. In this final section, we explain a few of these heuristics.

6.1. Normalizing the Eisenstein series. Let’s say you have some hypothetical Rankin-Selberg
integral I(ϕ, s) =

∫
H(Q)Z′(A)\H(A)E(h, s)ϕ(h) dh. And let’s say you’re reasonable sure it represents

the L-function L(π, r,As+B), divided by some Dirichlet L-functions, for certain unknown constants
A,B. How can you determine A,B and these Dirichlet L-functions?

Here is the trick. Suppose the Eisenstein series that appears in your integral is a degenerate
Eisenstein for a parabolic P ⊆ G. Assume for simplicity that G is semisimple; for example, it
might be an adjoint group. Then the character group of P is one dimensional, say X∗(P ) = Zν.
There are two choices for the generator ν. Pin down ν so that the modulus character δP (p) =
|ν(p)|n0 for a positive (as opposed to negative) integer n0. Now let’s say your Eisenstein series

E(g, s) =
∑

γ∈P (Q)\G(Q) f(γg, s) for a flat section f(g, s) ∈ IndG(A)
P (A)(|ν|

s).

The sum will converge absolutely for Re(s) > n0 (this is theorem, not just a heuristic). By doing
interwining operator calculations (I will omit explaining this aspect), one can find a product ξ(s)
of zeta functions so that E∗(g, s) = ξ(s)E(g, s) satisfies a functional equation relating s to n0 − s.
In other words, if G is split and f(g, s) is the flat spherical section, then E∗(g, s) = E∗(g, n0 − s).

Now, with this normalization, here is the heuristic: The Rankin integral I(ϕ, s) will represent
L(π,r,s+

1−n0
2

)

ξ(s) . So, by defining the Eisenstein series from a section in IndGP (|ν|s), the constant A = 1.
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Also note that this expression is consistent with the expected functional equation of the L-function:

L(π, r, s+ (1− n0)/2) = ξ(s)I(ϕ, s)

=

∫
H(Q)Z′(A)\H(A)

ϕ(h)E∗(h, s) dh

=

∫
H(Q)Z′(A)\H(A)

ϕ(h)E∗(h, n0 − s) dh

= L(π, r, n0 − s+ (1− n0)/2)

= L(π, r, 1− (s+ (1− n0)/2)).

6.2. Counting the unfolding. A powerful heuristic for helping to understand if a global integral
unfolds is the following. One can assign a non-negative integer to each term in a Rankin-Selberg
integral

∫
H(Q)Z′(A)\H(A) ϕ(h)E(h, s)θ(h) dh, as follows:

(1) If the Eisenstein series E(g, s) =
∑

γ∈P (Q)\G(Q) f(γg, s), then one assigns to this term the

integer dimNP , the dimension of the unipotent radical of P . Because the variety P\G has
dimension dimNP , one can think of this integer as counting “how big” the sum defining
the Eisenstein series is. Call this integer dim(Eis).

(2) If θ(g) =
∑

γ∈X(Q) ξ(γg) for some variety X and some function ξ, then one assigns to θ the

integer dimX, again thinking of this integer as how big the sum defining θ is. Call this
integer dim(θ).

(3) Suppose ϕ is a cusp form on a group G′, R′ ⊆ G′ is an algebraic subgroup, and χ :
R′(Q)\R′(A) → C× is a unitary character. The χ Fourier coefficient of ϕ is defined
as ϕχ(g) =

∫
R′(Q)\R′(A) χ

−1(r)ϕ(rg) dr. Rankin-Selberg integrals frequently unfold to χ-

Fourier coefficients. Let dim(χ), the dimension of the Fourier coefficient, denote the dimen-
sion of the algebraic groups R′.

(4) Finally, set dim(H/Z′) to be the dimension of the algebraic group Z ′\H ′.
With the above definitions, here is the Heuristic: If the global integral I(ϕ, s) unfolds to the χ
Fourier coefficient of ϕ, then

dim(H/Z ′) = dim(χ) + dim(Eis) + dim(θ).

A write-up of this heuristic appears in work of Friedberg-Ginzburg [FG21].
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