Cliques and sunflowers under bounded VC-dimension

Andrew Suk (UC San Diego)

March 28, 2021
Set system $\mathcal{F} \subset 2^V$.

Definition

A set $S \subset V$ is **shattered** by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A = X$.

Definition

The **VC-dimension** of \mathcal{F} is the size of the largest subset $S \subset V$ that is shattered by \mathcal{F}.
$G = (V, E)$, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.

$G =$
\(G = (V, E) \), let \(\mathcal{F} \subseteq 2^V \) such that \(\mathcal{F} = \{ N(v) : v \in V \} \).

\(|V| = |\mathcal{F}| = n \)
$G = (V, E)$, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
$|V| = |\mathcal{F}| = n$
$G = (V, E)$, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
$|V| = |\mathcal{F}| = n$

Definition

The VC-dimension of G is the VC-dimension of \mathcal{F}.

Andrew Suk (UC San Diego)
Cliques and sunflowers under bounded VC-dimension
Examples of graphs with bounded VC-dimension
Intersection graphs of segments in the plane.
1. Intersection graphs of segments in the plane.

2. Unit distance graph of points in \mathbb{R}^d.
Examples of graphs with bounded VC-dimension

1. Intersection graphs of segments in the plane.

2. Unit distance graph of points in \mathbb{R}^d.

3. **Semi-algebraic graphs** with bounded complexity.
 - $V =$ points in \mathbb{R}^d
 - $E =$ defined by bounded degree polynomial inequalities.
Examples of graphs with bounded VC-dimension

1. Intersection graphs of segments in the plane.

2. Unit distance graph of points in \mathbb{R}^d.

3. **Semi-algebraic graphs** with bounded complexity.
 - $V =$ points in \mathbb{R}^d
 - $E =$ defined by bounded degree polynomial inequalities.

4. Intersection graph of pseudo-segments in the plane.
Examples of graphs with bounded VC-dimension

1. Intersection graphs of segments in the plane.

2. Unit distance graph of points in \mathbb{R}^d.

3. **Semi-algebraic graphs** with bounded complexity.
 - $V =$ points in \mathbb{R}^d
 - $E =$ defined by bounded degree polynomial inequalities.

4. Intersection graph of pseudo-segments in the plane.

Problem

Can we substantially improve some of the classical theorems in extremal graph theory for graphs with bounded VC-dimension?
1 **Ramsey’s Theorem.** Every graph on n vertices contains a clique or independent set of size $c \log n$.

2 **Turán’s Theorem.** Every $K_{2,2}$-free graph on n vertices has at most $cn^{3/2}$ edges.

3 **Szemerédi’s regularity lemma.**
1. **Ramsey’s Theorem.** Every graph on n vertices contains a clique or independent set of size $c \log n$.
 - **Semi-algebraic graphs:** Improve to n^c.

2. **Turán’s Theorem.** Every $K_{2,2}$-free graph on n vertices has at most $cn^{3/2}$ edges.
 - **Semi-algebraic graphs:** Improve to $O(n^{3/2-\varepsilon})$.

3. **Szemerédi’s regularity lemma.**
 - **Semi-algebraic graphs:** Quantitative and qualitative improvements.
1. **Ramsey’s Theorem.** Every graph on n vertices contains a clique or independent set of size $c \log n$.
 - **Semi-algebraic graphs:** Improve to n^c.

2. **Turán’s Theorem.** Every $K_{2,2}$-free graph on n vertices has at most $cn^{3/2}$ edges.
 - **Semi-algebraic graphs:** Improve to $O(n^{3/2-\varepsilon})$.

3. **Szemerédi’s regularity lemma.**
 - **Semi-algebraic graphs:** Quantitative and qualitative improvements.

Problem

Can we improve these classical results for graphs with bounded VC-dimension?
An application of the Milnor-Thom theorem:

Theorem

There are at most \(2^{cn \log n}\) semi-algebraic graphs on \(n\) vertices and with complexity at most \(d\), where \(c = c(d)\).

Theorem (Anthony, Brightwell, Cooper 1995)

There are at least \(2^{n^{2-\varepsilon}}\) graphs with VC-dimension at most \(d\) on \(n\) vertices, where \(\varepsilon = \varepsilon(d)\).
2 Turán’s Theorem. Every $K_{2,2}$-free graph on n vertices has at most $cn^{3/2}$ edges.

Semi-algebraic graphs: Improve to $O(n^{3/2 - \epsilon})$.
Turán’s Theorem. Every $K_{2,2}$-free graph on n vertices has at most $cn^{3/2}$ edges.

- **Semi-algebraic graphs.** Improve to $O(n^{3/2-\varepsilon})$.

- **Bounded VC-dimension.** No improvement. There are $K_{2,2}$-free graphs on n vertices with $\Omega(n^{3/2})$ edges.
First main result

In joint work with Jacob Fox and János Pach

- We establish tight bounds for multicolor Ramsey numbers for graphs with bounded VC-dimension.
Definition

For $m \geq 2$, The multicolor Ramsey number

$$r(3, \ldots, 3)$$

m times

is the minimum integer N such that for any m-coloring of the edges of K_N contains a monochromatic copy of K_3.
Known results

\[r(3, 3) = 6 \]
\[r(3, 3, 3) = 17 \]
\[51 \leq r(3, 3, 3, 3) \leq 62 \]
\[162 \leq r(3, 3, 3, 3, 3) \leq 307 \]

\[2^m < r(3, \ldots, 3) < m! \]

\[m \text{ times} \]
Known results

\[r(3,3) = 6 \]
\[r(3,3,3) = 17 \]
\[51 \leq r(3,3,3,3) \leq 62 \]
\[162 \leq r(3,3,3,3,3) \leq 307 \]

\[2^m < r(3, \ldots, 3) < m! \]

\[\underbrace{2^m \times \ldots \times 2^m}_{m \text{ times}} \]
Known results

\[r(3, 3) = 6 \quad r(3, 3, 3) = 17 \quad 51 \leq r(3, 3, 3, 3) \leq 62 \]

\[162 \leq r(3, 3, 3, 3, 3) \leq 307 \]

\[2^m < r(3, \ldots, 3) < m! \]

\[\underbrace{2^m, \ldots, 2^m}_{m \text{ times}} \]
Known results

\[r(3, 3) = 6 \quad r(3, 3, 3) = 17 \quad 51 \leq r(3, 3, 3, 3) \leq 62 \]

\[162 \leq r(3, 3, 3, 3, 3) \leq 307 \]

\[2^m < r(3, \ldots, 3) < m! \]

\[\text{\textit{m times}} \]

\[N/m \]

Andrew Suk (UC San Diego) Cliques and sunflowers under bounded VC-dimension
Best known bounds

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

\[(3.199)^m < r(3, \ldots, 3) < 2^{O(m \log m)}\]

\[m \text{ times}\]
Best known bounds

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

\[(3.199)^m < r(3, \ldots, 3) < 2^{O(m \log m)}\]

Conjecture (Schur-Erdős)

\[r(3, \ldots, 3) = 2^{\Theta(m)}.\]
Best known bounds

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

$$(3.199)^m < r(3, \ldots, 3) < 2^{O(m \log m)}$$

Conjecture (Schur-Erdős)

$r(3, \ldots, 3) = 2^{\Theta(m)}$.

Theorem (Fox-Pach-S., 2020)

The conjecture of true for semi-algebraic colorings with bounded complexity.
Best known bounds

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

\[(3.199)^m < r(3, \ldots, 3) < 2^{O(m \log m)} \]

\[m \text{ times}\]

Conjecture (Schur-Erdős)

\[r(3, \ldots, 3) = 2^{\Theta(m)} \]

\[m \text{ times}\]

Theorem (Fox-Pach-S., 2021)

The conjecture holds is true for colorings with bounded VC-dimension.
Bounded VC-dimension setting

Color all edges of K_N with m colors.

$K_N =$
Color all edges of K_N with m colors.

v

$K_N = v$
Bounded VC-dimension setting

Color all edges of K_N with m colors.

![Graph](image)

Notation: $N_i(v) = \{u \in V : \chi(uv) = i\}$.
If we insist that the m-coloring has bounded VC-dimension:

$$\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \}$$

\mathcal{F} has VC-dimension at most $d = O(1)$.

Theorem (Fox-Pach-S. 2021)

For $m \geq 2$,

$$r_d(3, \ldots, 3)^m = 2^{\Theta(m)}.$$
If we insist that the m-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

\mathcal{F} has VC-dimension at most $d = O(1)$.

Theorem (Fox-Pach-S. 2021)

For fixed $p \geq 3$ and $m \geq 2$,

$$r_d(p, \ldots, p) = 2^{\Theta(m)}.$$
If we insist that the \(m \)-coloring has bounded VC-dimension:

\[F = \{ N_i(v) : v \in V, i \in [m] \} \]

\(F \) has VC-dimension at most \(d = O(1) \).

Theorem (Fox-Pach-S. 2021)

For fixed \(p \geq 3 \) and \(m \geq 2 \),

\[r_d(p, \ldots, p) = 2^{\Theta(m)} \]
\(m \) times
Sketch of the proof:

\[r_d(3, \ldots, 3) \leq 2^{cm}, \quad c = c(d) \]

Idea: We will use induction on \(m \). Set \(N = 2^{cm} \) and let \(V \) be an \(N \)-element vertex set.

\[\chi : \binom{V}{2} \to \{1, 2, \ldots, m\} \text{ and } \mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \}. \]
Sketch of the proof:

\[r_d(3, \ldots, 3) \leq 2^{cm}, \quad c = c(d) \]

Idea: We will use induction on \(m \). Set \(N = 2^{cm} \) and let \(V \) be an \(N \)-element vertex set.

\(\chi : \binom{V}{2} \rightarrow \{1, 2, \ldots, m\} \) and \(\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\} \).

\[K_N = \]

Andrew Suk (UC San Diego) Cliques and sunflowers under bounded VC-dimension
Goal: \(\exists v \in V \) such that \(|N_i(v)| \geq \epsilon N \) for some \(i \).

\[|N_i(v)| \geq \epsilon N > 2^{c(m-1)}. \]
Goal: \(\exists v \in V \text{ such that } |N_i(v)| \geq \epsilon N \text{ for some } i. \)

\[
|N_i(v)| \geq \epsilon N > 2^{c(m-1)}.
\]

Not true: We can only assume \(|N_i(v)| \geq N/m \) by pigeonhole.
\[\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \}. \]

Crossing: Let \(A \in \mathcal{F} \) and \(u, v \in V \). Then \(A \) crosses \(\{u, v\} \) if it contains one but not the other.
\[\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \}. \]

Crossing: Let \(A \in \mathcal{F} \) and \(u, v \in V \). Then \(A \) crosses \(\{u, v\} \) if it contains one but not the other.

\[K_N = \]

\begin{tabular}{c}
- \(u \cdot \) \\
- \(v \cdot \)
\end{tabular}
Crossing pairs of vertices

\[\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}. \]

Crossing: Let \(A \in \mathcal{F} \) and \(u, v \in V \). Then \(A \) crosses \(\{u, v\} \) if it contains one but not the other.

\[K_N = \]

\[A \]

\[u \cdot \]

\[v \cdot \]

Andrew Suk (UC San Diego) Cliques and sunflowers under bounded VC-dimension
\(\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \} \), dual VC-dimension \(d \).

Lemma

For any \(\delta \) satisfying \(1 \leq \delta \leq |\mathcal{F}| \), there is an equipartition \(V = S_1 \cup \cdots \cup S_r \) of \(V \) into \(r \leq c(\frac{|\mathcal{F}|}{\delta})^d \) parts, such that any pair of vertices from the same part \(S_t \) is crossed by at most \(2\delta \) members of \(\mathcal{F} \).
Partition Lemma

$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$, dual VC-dimension d.

Lemma

For any δ satisfying $1 \leq \delta \leq |\mathcal{F}|$, there is an equipartition $V = S_1 \cup \cdots \cup S_r$ of V into $r \leq c(|\mathcal{F}|/\delta)^d$ parts, such that any pair of vertices from the same part S_t is crossed by at most 2δ members of \mathcal{F}.

$K_N =$
\[\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \} , \text{ dual VC-dimension } d. \]

Lemma

For any \(\delta \) satisfying \(1 \leq \delta \leq |\mathcal{F}| \), there is an equipartition \(V = S_1 \cup \cdots \cup S_r \) of \(V \) into \(r \leq c(\frac{|\mathcal{F}|}{\delta})^d \) parts, such that any pair of vertices from the same part \(S_t \) is crossed by at most \(2\delta \) members of \(\mathcal{F} \).

\[K_N = \]

![Graph](image-url)
Partition Lemma

\[\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \} \], dual VC-dimension \(d \).

Lemma

For any \(\delta \) satisfying \(1 \leq \delta \leq |\mathcal{F}| \), there is an equipartition \(V = S_1 \cup \cdots \cup S_r \) of \(V \) into \(r \leq c(|\mathcal{F}|/\delta)^d \) parts, such that any pair of vertices from the same part \(S_t \) is crossed by at most \(2\delta \) members of \(\mathcal{F} \).

\[K_N = \]

\[
\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\end{array}
\]
Partition Lemma

\[\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \}, \text{ dual VC-dimension } d. \]

Lemma

For any \(\delta \) satisfying \(1 \leq \delta \leq |\mathcal{F}| \), there is an equipartition \(V = S_1 \cup \cdots \cup S_r \) of \(V \) into \(r \leq c(|\mathcal{F}|/\delta)^d \) parts, such that any pair of vertices from the same part \(S_t \) is crossed by at most \(2\delta \) members of \(\mathcal{F} \).

\[K_N = \]

Andrew Suk (UC San Diego) Cliques and sunflowers under bounded VC-dimension
\(\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \} \), dual VC-dimension \(d \).

Lemma

For any \(\delta \) satisfying \(1 \leq \delta \leq |\mathcal{F}| \), there is an equipartition \(V = S_1 \cup \cdots \cup S_r \) of \(V \) into \(r \leq c(|\mathcal{F}|/\delta)^d \) parts, such that any pair of vertices from the same part \(S_t \) is crossed by at most \(2 \delta \) members of \(\mathcal{F} \).
\[\mathcal{F} = \{ N_i(v) : v \in V, i \in [m] \}, \text{ dual VC-dimension } d. \]

Lemma

For any \(\delta \) satisfying \(1 \leq \delta \leq |\mathcal{F}| \), there is an equipartition \(V = S_1 \cup \cdots \cup S_r \) of \(V \) into \(r \leq c(|\mathcal{F}|/\delta)^d \) parts, such that any pair of vertices from the same part \(S_t \) is crossed by at most \(2\delta \) members of \(\mathcal{F} \).
Key observation:

\[K_N = \]
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.

\[K_N = \]

Andrew Suk (UC San Diego) Cliques and sunflowers under bounded VC-dimension
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.
Key observation: We are done if a part contains a red edge and a vertex of large degree in red.
Case 1. If a part is missing many colors, we are done by induction.
Case 2. Each part has many distinct colors

\[K_N = \]

\[
\begin{array}{ccc}
\text{many} & \text{many} & \text{many} \\
\text{many} & \text{many} & \text{many} \\
\text{many} & \text{many} & \text{many} \\
\end{array}
\]
Key observation: Otherwise, many vertices have small neighborhoods with respect to some colors.
Key observation: Otherwise, many vertices have small neighborhoods with respect to some colors.
Key observation: Otherwise, many vertices have small neighborhoods with respect to some colors.
Key observation: Otherwise, many vertices have small neighborhoods with respect to some colors.
Key observation: Otherwise, many vertices have small neighborhoods with respect to some colors.
Goal: Find a vertex with large degree with respect to one color class.
Theorem (Fox-Pach-S. 2021)

For \(d = O(1) \),

\[
rd(3, \ldots, 3) = 2^{\Theta(m)}.
\]

Theorem (Fredricksen-Sweet and Abbot-Moser, Schur)

\[
(3.199)^m < r(3, \ldots, 3) < 2^{O(m \log m)}.
\]

Question. For what other classes of graphs can we improve the \(2^{O(m \log m)} \) upper bound?
Improvement: Intersection size of sets

\(\mathcal{F} \subset 2^X, \ m\text{-uniform.} \)

1. **Vertices:** \(V = \mathcal{F} \).

2. **Edge coloring:** For \(A, B \in \mathcal{F} \), color \((A, B)\) with color \(i \in \{0, 1, \ldots, m - 1\} \) if \(|A \cap B| = i \).
\(\mathcal{F} \subset 2^X \), \(m \)-uniform.

1. **Vertices:** \(V = \mathcal{F} \).

2. **Edge coloring:** For \(A, B \in \mathcal{F} \), color \((A, B)\) with color \(i \in \{0, 1, \ldots, m - 1\} \) if \(|A \cap B| = i \).

Question: How large does \(|\mathcal{F}| \) have to be in order to guarantee a monochromatic \(K_3 \)?
\(\mathcal{F} \subset \binom{X}{m}, \) \(m \)-uniform.

1. **Vertices:** \(V = \mathcal{F} \).

2. **Edge coloring:** For \(A, B \in \mathcal{F} \), color \((A, B) \) with color \(i \in \{0, 1, \ldots, m-1\} \) if \(|A \cap B| = i \).

Question: How large does \(|\mathcal{F}| \) have to be in order to guarantee a monochromatic \(K_3 \)?

1. **Schur:** \(2^{cm \log m} \).

2. **Alweiss-Lovett-Wu-Zhang:** \(2^{cm \log \log m} \).
\[V = \text{ground set} \]
\[\mathcal{F} \subset \binom{V}{m}, \text{m-uniform}. \]

\[A_1, \ldots, A_p \in \mathcal{F} \text{ for a } p\text{-sunflower if } A_i \cap A_j = A_k \cap A_\ell \]
\(V = \text{ground set} \)

\[\mathcal{F} \subset \binom{V}{m}, \text{ } m\text{-uniform}. \]

\(A_1, A_2, A_3 \in \mathcal{F} \) for a \textbf{3-sunflower} if \(A_i \cap A_j = A_k \cap A_\ell \)
V = ground set

$\mathcal{F} \subset \binom{V}{m}$, m-uniform.

$A_1, A_2, A_3 \in \mathcal{F}$ for a 3-sunflower if $A_i \cap A_j = A_k \cap A_\ell$
\(V = \text{ground set} \)

\(\mathcal{F} \subset \binom{V}{m}, \ m\text{-uniform}. \)

\(A_1, A_2, A_3 \in \mathcal{F} \) for a 3-\textbf{sunflower} if \(A_i \cap A_j = A_k \cap A_\ell \)
Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq m!2^m = 2^{O(m \log m)}.$$
Erdős-Rado sunflower conjecture

Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq m!2^m = 2^{O(m \log m)}.$$
Erdős-Rado sunflower conjecture

Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq m!2^m = 2^{O(m \log m)}.$$
Theorem (Erdős-Rado)

Let \(\mathcal{F} \subset \binom{V}{m} \) that does not contain a 3-sunflower. Then

\[
|\mathcal{F}| \leq m!2^m = 2^{O(m \log m)}.
\]

\(d(v) \geq |\mathcal{F}|/(2m) \).
Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq m!2^m = 2^{O(m \log m)}.$$

Lower bound: 2^m
Theorem (Erdős-Rado)

Let $\mathcal{F} \subseteq \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq m!2^m = 2^{O(m \log m)}.$$

Lower bound: 2^m
Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq m!2^m = 2^{O(m \log m)}.$$

Conjecture (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}.$$
Erdős-Rado sunflower conjecture

Theorem (Alweiss-Lovett-Wu-Zhang)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m \log \log m)}.$$

Conjecture (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}.$$
Theorem (Alweiss-Lovett-Wu-Zhang)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m \log \log m)}.$$

Conjecture (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}.$$

Question: What if \mathcal{F} is defined geometrically?
Theorem (Alweiss-Lovett-Wu-Zhang)

Let $\mathcal{F} \subseteq \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m \log \log m)}.$$

Conjecture (Erdős-Rado)

Let $\mathcal{F} \subseteq \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}.$$

Question: What if \mathcal{F} has bounded VC-dimension?
Question: What if \mathcal{F} has bounded VC-dimension?

$\mathcal{F} = 2^m$
Question: What if \mathcal{F} has bounded VC-dimension?

$\mathcal{F} = 2^{m-1}$, VC-dimension 1, no 3-sunflower.
Question: What if \mathcal{F} has bounded VC-dimension?

$\mathcal{F} = 2^{m-1}$, VC-dimension 1, no 3-sunflower.
Question: What if \mathcal{F} has bounded VC-dimension?

$\mathcal{F} = 2^{m-1}$, VC-dimension 1, no 3-sunflower.

Can be realized geometrically: $V =$ points in the plane, $\mathcal{F} =$ disks with m points inside.
Second main result

Theorem (Fox-Pach-S. 2021)

Let $\mathcal{F} \subset \binom{V}{m}$, such that \mathcal{F} has VC-dimension $d = O(1)$ and no 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m(2d)^2 \log^* m)}.$$
Theorem (Fox-Pach-S. 2021)

Let $\mathcal{F} \subset \binom{V}{m}$, such that \mathcal{F} has VC-dimension $d = O(1)$ and no 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m(2d)^2 \log^* m)}.$$

Sketch of Proof. Induction on m.

Let $\mathcal{F} \subset \binom{V}{m}$ with VC-dimension at most d and no 3-sunflower.

$$f_d(m) = 2^{cm(2d)^2 \log^* m}.$$

$$|\mathcal{F}| \leq f_d(m).$$
$\mathcal{F} \subset \binom{V}{m}$, VC-dimension d, no 3-sunflower, $|\mathcal{F}| > f_d(m)$.
\[\mathcal{F} \subset \binom{V}{m}, \text{ VC-dimension } d, \text{ no 3-sunflower, } |\mathcal{F}| > f_d(m). \]

\[\mathcal{F} = \]

\[
S = s \text{ highest degree vertices, } s = 100m^2(f_d(\log m))^2.
\]
\[S = s \text{ highest degree vertices, } s = 100m^2(f_d(\log m))^2. \]
\[S = s \] highest degree vertices, \[s = 100m^2(f_d(\log m))^2. \]
$S = s$ highest degree vertices, $s = 100m^2(f_d(\log m))^2$.

\[
\mathcal{F} = S
\]

\[
\sum_{v \in S} d(v) \leq m|\mathcal{F}|
\]

\[
d(u) \leq (m/s)|\mathcal{F}|
\]
\[d(u) \leq (m/s)|\mathcal{F}| \]

\[\mathcal{F} = \]

A intersects at most \((m^2/s)|\mathcal{F}|\) outside of \(S\).
\[d(u) \leq (m/s)|\mathcal{F}| \]

\[\mathcal{F} = \]

A intersects at most \((m^2/s)|\mathcal{F}|\) outside of \(S\).
\[d(u) \leq (m/s)|\mathcal{F}| \]

At least \((1 - \frac{6m^2}{s})(|\mathcal{F}|^3)\) triples are pairwise disjoint outside of \(S\).
Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.

$\mathcal{F} =$

S
Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.
Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.

\[
\mathcal{F} = \{ A \cap S : |A \cap S| \leq \log m \}
\]
Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.

$\mathcal{F} = \{ A \cap S : |A \cap S| \leq \log m \}$

1. \mathcal{F}' is a multiset system
2. $|\mathcal{F}'| \geq |\mathcal{F}|/2$
By induction: $|\mathcal{F}'| > 2^{cm(2d)^2 \log^* m}$, sets of size at most $\log m$.

Lemma

There are at least

$$\frac{1}{(f_d(\log m))^2 \left(\frac{|\mathcal{F}'|}{3} \right)}$$

triples that form a 3-sunflower in S.

Andrew Suk (UC San Diego) Cliques and sunflowers under bounded VC-dimension
By induction: $|F'| > 2^{cm(2d)^2 \log^* m}$, sets of size at most $\log m$.

$F = \begin{array}{c}
\end{array}$

Lemma

There are at least

$$\frac{1}{8(f_d(\log m))^2 \binom{|F|}{3}}$$

triples that form a 3-sunflower in S.
By induction: $|\mathcal{F}'| > 2^{cm(2d)^2 \log^* m}$, sets of size at most $\log m$.

\[
\mathcal{F} =
\]

Lemma

There are at least

\[
\frac{1}{8(f_d(\log m))^2} \binom{|\mathcal{F}|}{3}
\]

triples that form a 3-sunflower in S.
\[s = 100m^2(f_d(\log m))^2. \]

\[\mathcal{F} = \]

At least \(\frac{1}{8(f_d(\log m))^2}(|\mathcal{F}|) \) 3-sunflowers in \(S \).

At least \((1 - \frac{6m^2}{s})(|\mathcal{F}|) \) triples are pairwise disjoint outside of \(S \).
Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.

\[
\mathcal{F} = \quad S
\]
Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.
Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.

\[\mathcal{F} = \]

\textbf{Sauer-Shelah:} At most s^d distinct intersections with S.
Case 2: For at least \(|\mathcal{F}|/2\) sets \(A \in \mathcal{F}\), \(|A \cap S| > \log m\).

\[\mathcal{F} = \]

Sauer-Shelah: At most \(s^d\) distinct intersections with \(S\).

\(\exists S' \subset S, |S'| > \log m\).
Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.

Sauer-Shelah: at least $|\mathcal{F}|/(2s^d)$ sets A, $A \cap S = S'$.
Sauer-Shelah: at least $|\mathcal{F}|/(2s^d)$ sets A, $A \cap S = S'$.

\[
\mathcal{F} = \frac{|\mathcal{F}|}{2s^d} \leq f_d(m - \log m) \leq 2^{c(m - \log m)(2d)^2 \log^* m}
\]
Sauer-Shelah: at least $|\mathcal{F}|/(2s^d)$ sets A, $A \cap S = S'$.

$$\mathcal{F} =$$

$$|\mathcal{F}| \leq 2^{cm(2d)^2 \log^* m} = f_d(m).$$
Sauer-Shelah: at least $|\mathcal{F}|/(2s^d)$ sets A, $A \cap S = S'$.

\[f_d(m) < |\mathcal{F}| \leq 2^{cm(2d)^2 \log^* m} = f_d(m). \]

□
Open problems

Theorem (Fox-Pach-S. 2021)

Let $\mathcal{F} \subset {V \choose m}$, such that \mathcal{F} has VC-dimension $d = O(1)$ and no 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m(2d)^2 \log^* m)}.$$

Questions

1. Semi-algebraic setting? I.e., points in spheres in \mathbb{R}^d.
2. (Weak delta-system) What about 3 sets that pairwise intersect with the same size?
3. Multicolor Ramsey numbers: What if each color class has bounded VC-dimension?
Thank you!
\[s = 100m^2 (f_d(\log m))^2 = (100m^2) 2^{2c \log m (2d)^2 (\log^* m - 1)} . \]

\[|\mathcal{F}| \leq 2s^d 2^{cm(2d)^2 \log^* m - c \log m (2d)^2 \log^* m} \]

\[\leq 2^{cm(2d)^2 \log^* m} . \]